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THE PHILOSOPHY OF MATHEMATICS.

CHAPTER I.

FIRST PRINCIPLES OF THE INFINITESIMAL METHOD—
THE METHOD OF EXHAUSTION.

The student of mathematics, on passing from the

lower branches of the science to the infinitesimal

analysis, finds himself in a strange and almost wholly

foreign department of thought. . He has not risen, by

easy and gradual steps, from a lower Into a higher,

purer, and more beautiful region of scientific truth.

On the contrary, he is painfully impi-essed with the

conviction, that the continuity of the science has been

broken, and its unity destroyed, by the Influx of prin-

ciples which are as unintelligible as they are novel.

He finds himself surrounded by enigmas and obscuri-

ties, which only serve to perplex his understanding

and darken his aspirations after knowledge. That

clearness of evidence, which is the boast of the mathe-

matics, and which has hitherto cheered and stimulated

his exertions, forsakes him as soon as he enters on the

study of the infinitesimal calculus, and the darkness of

doubt settles on his path. If, Indeed, he does not

A» 9



10 THE PSILOSOPBY OF MATHEMATICS.

abandon the study in disgust or despair, as thousands

have done, he pursues it for the sake of a diploma or

a degree, or from some less worthy motive than the

love of science. He certainly derives from it compara-

tively little advantage in the cultivation of his intel-

lectual powers; because the dark and unintelligible

processes he is required to perform scarcely demand a

natural exercise of them.

These disadvantages of the study are due, for the

most part, to the manner in which the calculus is

usually taught. In most elementarj' works on the dif-

ferential calculus, the first principles of the science are

not set forth at all, or else so imperfectly defined as to

mislead the student from the clear path of mathemati-

cal science into a region of clouds and darkness. I

have frequently made the experiment with some of

the best of such works. I have more than once pnt

them .into the hands of a class of from ninety to a

hundred students, among whom there were mathema-

tical minds of no ordinary power, and required them

to tell me what are the first principles of the infini-

tesimal method or calculus. Yet, after having read

and mastered the first chapter, which, of course, con-

tained a discussion of "First Principles," not one of

them had acquired the least notion of what those prin-

ciples are. Not one of them could even name the

first principles of the science, much less define them.

In this respect, the most capable and diligent members

of the class were on a perfect level with the most

stupid and indolent. Indeed, if the authors of the

books themselves knew what the first principles of

the calculus are, they were very careful not to unveil

their knowIodKc
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Now, the very first condition of the existence of a

mathematical science as such is, that its first principles

shall be so clear and so perfectly defined that no

one could mistake them. But even this primary and

indispensable condition is not fulfilled by most of the

treatises or text-books on the infinitesimal analysis.

Hence this analysis, as usually developed in books for

the instruction of beginners, is still in a semi-chaotic

state. If, then, we would introduce anything like the

order, harmony, and beauty of real mathematical

science into the transcendental analysis, the first step

to be taken is to exhibit its first principles in a clear

and unmistakable light. My object in this work is

to contribute all in my power toward so desirable a

result ; or, in other words, to render as clear as pos-

sible the fundamental principles of the higher calculus,

from which the whole science should be seen to flow

in the form of logical consequence, and that, too, as

clearly as the light of day flows from the sun. Much
has already been done in this direction ; far—far more

than has been appropriated by the so-called teachers

of the science. Hence I shall have frequent occasion

to avail myself of the labors of others ; but I shall

never do so without an explicit acknowledgment of

my obligation to them.

In the prosecution of this design, I shall trace the

rise and progress of the infinitesimal analysis from the

first appearance of its elements in the Greek geometry

to the present day. This will enable us to see, the

more clearly, the exact nature of its methods, by show-

ing us the difficulties it has had to encounter, and

the precise manner in which it has surmounted them.

It will also disclose, in a clear light, the merits of



1

2

TIIE PHILOSOPSr OF MATHEMA TICS.

the various methods of the calculus in the successive

stages of its development from Euclid and Archimedes

to Cavalieri and Pascal, and from Cavalieri and Pascal

to Newton and Leibnitz. Nor is this all. For such a

historical sketch will show us that, after all its wander-

ings through the dark undefined regions of the infinite,

the human mind will have to come back to the humble

and unpretending postulates of Euclid and Archimedes

in order to lay out and construct a satisfactory and

easy road across the Alpine heights of the transcen-

dental analysis. And besides, is there not a pleasure

— is there not an inexpressible delight in the contem-

plation of the labors of the human mind by which it

has created by far its most sublime instrument of dis-

covery; an instrument, indeed, with which it has

brought to light the secrets of almost every depart-

ment of nature, and with which, above all, it has un-

veiled the entire system of the material universe to

the wonder and admiration of the world ?

THE METHOD OF EXHAUSTION.

The ancient geometers, starting with the principle

of superposition, were enabled to compare triangles,

to ascertain their properties and the measure of their

surfaces. From triangles they proceeded to the inves-

tigation of polygons, which may be easily divided into

triangles, and thence to the consideration of solids

bounded by rectilinear figures, such as prisms, pyra-

mids, and polyedrons. Having ascertained the pro-

perties of these magnitudes, they were unable to pro-

ceed further without the aid of a more powerful or

searching method. Hence the method of exhaustion

was invented and used by them in their more difficult
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researches. This opened a new and brilliant career

to the ancient geometry. The theory of curved lines

and surfaces was partially developed, and the value

of the areas and volumes which they contain detei'-

mined. It has more than a thousand times been

asserted, that the method of exhaustion, used by Euclid

and Archimedes, " contains the germ of the infinitesi-

mal analysis" of the moderns. But if we would see

this truth in a clear light, or comprehend the precise

meaning of what is so often and so vaguely asserted,

we must recur to the details or elements of the method

of exhaustion.

As the ancients, says Carnot, "admitted only de-

monstrations which are perfectly rigorous, they be-

lieved they could not permit themselves to consider

curves as polygons of a great number of sides; but

Avhen they wished to discover the properties of any

one of them, they regarded it as the fixed term, Mdiich

the inscribed and circumscribed polygons continually

approached, as nearly as they pleased, in proportion

as they augmented the number of their sides. In this

way, they exhausted in some sort the space between

the polygons and the curves ; which, without doubt,

caused to be given to this procedure the name of the

method of exhaustion." *

This will, perhaps, be more distinctly seen in an

example. Suppose, then, that regular polygons of

the same number of sides are inscribed in two circles

of different sizes. Having established that the poly-

gons are to each other as the squares of their homo-

logous lines, they concluded, by the method of exhaus-

tion, that the circles are to each other as the squares

* Reflexions sur la M^taphysiqiie du Calcul InfiiiiU'sinial, p. ISS.
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of their radii. That is, they supposed the number of,

the sides of the inscribed polygons to be doubled, and

this process to be repeated until their peripheries ap-

proached as near as we please to the circumferences of

the circles. As the spaces between the polygons and

the circles were continually decreasing, it was seen to

be gradually exhausted ; and hence the name of the

method. But although the polygons, by thus continu-

ing to have the number of their sides doubled, might

be made to approach the circumscribed circles more

nearly than the imagination can conceive, leaving no

appreciable difference between them; they would al-

ways be to each other as the squares of their homo-

logous sides, or as the squares of the radii of the cir-

cumscribed circles. Hence they conjectured, that the

circles themselves, so very like the polygons in the

last stage of their fulness or roundness, were to each

other in the same ratio, or as " the squares of the

radii." But it was the object of the ancient geometers,

not merely to divine, but to demonstrate. A perfect

logical rigor constituted the very essence of their

method. Nothing obscure, nothing vague, was ad-

mitted either into their premises, or into the structure

of their reasoning. Hence their demonstrations abso-

lutely excluded the possibility of doubt or controversy;

a character and a charm which, it is to be lamented,

the mathematics has so often failed to preserve in the

spotless splendor of its primitive purity.

Having divined that any two circles (C and c) are

to each other as the squares of their radii (-R and r), the.

ancient geometers proceeded to demonstrate the truth

of the proposition. They j^roved it to be necessarily

true by demonstrating every other possible hypothesis



THE PHILOSOPHY OF MATHEMATICS. 15

to be false. Thus, said they, if C is not to c as E,^ :

r'; then let us suppose that C : c : : R^ : r"; r' being

any line larger than r. By a process of reasoning,

perfectly clear and rigorous, they proved that this

supposition led to an absurdity. Then, again, they

supposed that C : c : : E.^ : r"'^ ; r" being less than r

;

an hypothesis which, in like manner, was shown to

lead necessarily to an absurdity. Hence, as the line

which entered into the fourth term of the proportion

could be neither greater nor less than the radiiis r, it

was concluded to be that radius itself. This process,

by which every possible supposition, except the one

to be demonstrated, was shown to lead to an absurdity,

has always been called the reductio ad absurdum.

Hence this complex method, used by the ancient

geometers in their most difficult researches, has some-

times been called the reductio ad absurdum., as well as

the method of exhaustion— a form of speech, in both

cases, in which a part is put for the whole. The
reductio ad, absurdum is, indeed, generally included

in the meaning of those who simply speak of the

method of exhaustion, and vice versa.

By this method the ancients also demonstrated that

the volumes of spheres are to each other as the cubes

of their radii; that pyramids having the same altitude

are to each other as their bases ; that a cone is one-

third of a cylinder with the same base and the same

altitude.

They used it also in regard to curved surfaces.

They imagined other surfaces to be inscribed and

circumscribed, of which they gradually increased the

number of sides and of zones, in such a manner as to

continually approximate toward each other, and con-
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sequently to close more and more upon the proposed

surface. The property of the mean figure was thus

indicated or inferred from the known property of the

figures which so nearly coincided with it ; and this

inference, or conjecture, was verified by the reductio

ad absurdum, which showed that every contrary sup-

position led infallibly to a contradiction.

It was thus that Archimedes, the Newton of the

ancient world, demonstrated that the convex surface

of a right cone is equal to the area of the circle which

has for a radius the mean proportional between the

side of the cone and the radius of the circle of the

base; that the total*area of the sphere is equal to four

great circles ; and that the surface of any zone of a

sphere is equal to the circumference of a great circle

multiplied by the height of the zone. He likeAvise

demonstrated that the volume of a sphere is equal to

its surface multiplied by one-third of its radius. Hav-

ing determined the surface and the volume of the

sphere, it was easy to discover their relations to the

surface and the volume of the circumscribed cylinder.

Accordingly, Archimedes perceived that the surface

of a sphere is exactly equal to the convex surface of

the circumscribed cylinder ; or that it is to the whole

surface of the cylinder, including its bases, as 2 to 3

;

and that the volumes of these two geometrical solids

are to each other in the same ratio ; two as beautiful

discoveries as were ever made by him or by any other

man.*

* When Cicero was in Syracuse he sought oul; the tomb of Archi-

medes, and, having removed the rubbish beneath which it had long

been buried, he found a sphere arid circumscribed cylinder engraved

on its surface, by which he knew it to be the tomb of the great

geometer.
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Carnot has well expressed the merits of the method
of exhaustion. " That doctrine," says he, " is cer-

tainly very beautiful and very precious ; it carries with

it the character of the most perfect evidence, and does

not permit one to lose sight of the obj^t in view ; it

was the method of invention of the ancients; it is still

very useful at the present day, because it exercises the

judgment, which it accustoms to the rigor of demon-

strations, and because it contains the germ of the in-

finitesimal analysis. It is true that it exacts an

effort of the mind ; but is not the power of meditation

indispensable to all those who wish to penetrate into

a knowledge of the laws of nature, and is it not neces-

sary to acquire this habit early, provided we do not

sacrifice to it too much time?"*

Such were its principal advantages, some of which

it still enjoys in a far greater degree than the infini-

tesimal analysis of the moderns. But, on the other

hand, it had its disadvantages; it was indirect and

tedious, slow and painful in its movements; and, after

all, it soon succumbed to the difficulties by which the

human mind found itself surrounded. It could not

raise even the mind of an Archimedes from questions

the most simi)le to questions more complex, because it

had not the ttou area on which to plant its lever. Truths

were waiting on all sides to be discovered, and con-

tinued to wait for centuries, until a more powerful

instrument of discovery could be invented. Descartes

supplied the noii arcb, the point d'appui, and Newton,

having greatly improved the method of Archimedes,

raised the world of mind, into unspeakably broader

and more beautiful regions of pure thought.

« Eeflexions sur la Mefapliysique du Calcul Infinitesimal, p. 138.

2»
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The method of the ancients, says Carnot, " contains

the germ of the infinitesimal analysis" of Newton and

Leibnitz. But he nowhere tells us what that germ is,

or wherein it consists. It is certainly not to be found

in the reduetioMd absurdum, for this has been banished

from the mooern analysis. Indeed, it was to get rid

of this indirect and tedious process that Newton pro-

posed his improved method. But there are other ele-

ments in, the method of the ancients: 1. In every

case certain variable magnitudes are used as auxiliary

quantities, or as the means of comparison between the

quantities proposed ; and these auxiliary quantities are

made to vary in such a manner as to approach more and

more nearly the proposed quantities, and, finally, to dif-

fer from them as little as one pleases. 2. The variable

quantities are never supposed to become equal to the

quantities toward which they were made to approach.

Now here we behold the elements of the modern

infinitesimal analysis in its most improved and satis-

factory form. The constant quantity, toward which

the variable is made' or conceived to approach as

nearly as one pleases, is, in the modern analysis, called

"the limit" of that variable. The continually de-

creasing difference between the variable and its limit,

which may be conceived to become as small as one

pleases, is, in the same analysis, known as an " indefi-

nitely small quantity." It has no fixed value, and is

never supposed to acquire one. Its only property is

that it is a variable quantity whose limit is zero.

These are the real elements of the modern infinitesimal

analysis. If properly developed and applied, the in-

finitesimal analysis will retain all the wonderful ease

and fertility by which it is characterized, without
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losing aught of that perfect clearness of evidence

which constitutes one of the chief excellences of the

ancient method. But, unfortunately, such a develop-

ment of the infinitesimal analysis has demanded an

enduring patience in the pursuit of trudi, and a capa-

city for protracted research and profound meditation

which but few mathematicians or philosophers have

been pleased to bestow on the subject. Indeed, the

true analysis and exposition of the infinitesimal method

is, like the creation of that analysis itself, a work for

many minds and for more ages than one. Although

a Berkeley, a Maclaurin, a Carnot, a D'Alembert, a

Cauchy, a Duhamel, and other mathematicians* of

the highest order, have done much toward such an

exposition of the infinitesimal analysis
;
yet no one

imagines that all its enigmas have been solved or all

its unmathematical obscurities removed.

When the true philosophy of the infinitesimal cal-

culus shall appear, it will be seen, not as a metaphysi-

cal speculation, but as a demonstrated science. It

will put an end to controversy. It will not only

cause the calculus to be all over radiant with the clear-

ness of its own evidence, but it will also reflect a new

light on the lower branches of the mathematics, by re-

vealing those great and beautiful laws, or principles,

which are common to the whole domain of the science,

from the first elements of geometiy to the last results of

* I have purposely omitted the name of Comte from the above list.

Mr. John Stuart Mill has, I am aware, in his work on Logic, ventured

to express the opinion that M. Comte "may truly be said to have

created the philosophy of the higher mathematics." The truth is,

however, that he discusses, with his usual verbosity, "the Philoso-

phy of the Transcendental Analysis," without adding a single notion

to those of his predecessors, except a few false ones of his own.
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the transcendental analysis. Something of the kind is

evidently needed, if we would banish from the ele-

ments of geometry the indirect and tedious process of

the reduotio ad absurdum. Accordingly, many at-

tempts have Ij^en made, of late, t« simplify the demon-

strations of Euclid and Archimedes, by introducing the

principles of the infinitesimal method into the elements

of geometry. But, unfortunately, from a misconcep-

tion of these principles, they have usually succeeded

in bringing down darkness rather than light from the

higher into the lower branches of mathematics. Thus,

the infinitesimal method, instead of reflecting a new

light, is made to introduce a new darkness into the

very elements of geometry.

We find, for example, in one of the most exten-

sively used text-books in America, the following de-

monstration :
* " The circumferences of circles are to

each other as their radii, and the areas are as the squares

of their radii."

Let us designate the circumference of the circle

whose radius is C A by circ. C A ; and its area by,

area C A ; it is then- to be shown that

circ. C. A : circ. O B : : C A : O B, and that

area C A : area O B : : C A^ : O B^

A ^^^^

* Davie3" Legeudre, Book V., Proijositiou XI. Theorem.
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Inscribe witliin the circles two regular polygons of

the same number of sides. Then, whatever be the

number of sides, their perimeters will be to each other

as the radii C A and O B (Prop. X.). Now if the

arcs subtending the sides of the polygons be continu-

ally bisected until the number of sides of the poly-

gons shall be indefinitely increased, the perimeters of

the polygons will become equal to the circumferences

of the circumscribed circles (Prop. YIII., Cor. 2), and

we have here

circ. C A : eire. O B : : C A : O B.

Again, the areas of the inscribed polygons arc to

each other as C A= to O B'^ (Prop. X.). But when
the number of sides of the polygons is indefinitely in-

creased, the areas of the polygons become equal to the

areas of the circles, each to each (Prop. VIII., Cor. 1);

hence we shall have

area C A : area O B : : C A= : O B^ "

If this were an isolated case, or without any similar

demonstrations in the same work, or in other elemen-

tary works, it might be permitted to pass without

notice. Bat the principle on which it proceeds forms

the basis of the demonstrations of many of the most

important propositions in the work before us, and is

also most extensively used in other books for the in-

struction of the young. Hence it becomes necessary

to test its accuracy, or its fitness to occupy the position

of a first principle, or postulate, in the science of ma-

thematics.

The most scrupulous attention is, in the above in-

stance, paid to all the forms of a demonstration ; and
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this, no doubt, has an imposing effect on the mind of

the beginner. But what shall we say of its substance?

The whole demonstration rests on the assumption that

an inscribed polygon, with an indefinite number of

sides, is equal to the circumscribed circle. Or, in

other words, as the author expresses it in a more re-

cent edition of his Geometry, " the circle is but a regu-

lar polygon of an infinite number of sides."* The

same principle is employed to demonstrate the pi'opo-

sition that " the area of a circle is equal to the product

of half its radius by the circumference." Nor is this

all. All the most important and beautiful theorems,

relating to " the three round bodies," are made to rest

on this principle alone ; and if this foundation be not

valid, then they rest on nothing, except the too easy

faith of the teacher and his pupils. One would sup-

pose that if any portion of the science of geometry

should have a secure foundation, so as to defy contra-

diction and silence controversy, it would certainly be

the parts above indicated, which constitute the most

striking and beautiful features of the whole structure.

In another "Elementary Course of Geometry,"!

extensively used as a text-book in our schools and

colleges, the same principle is made the foundation of

all the same theorems. Indeed, this principle of the

'' infinitesimal method," as it is called, is even more

lavishly used in this last work than in the one already

noticed. " The infinitesimal system," says the author,

" has been adopted without hesitation, and to an ex-

tent somewhat unjjrecedented. The usual expedients

» Davies' Legendre, revised edition of 1856. Book V., Scholium to

Proposition XII.

t Haeliley's Geometry.
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for avoiding this, result in tedious methods, involving

the same principle, only under a more covert form. The
idea of the infinite is certainly a simple idea, as natural

to the mind as any other, and even an antecedent con-

dition of the idea of the finite." * Now the question

before us, at present, relates not to the use of " the in-

finite" in mathematics, but to the manner in which it

is used.

The author tells us that " the perimeter of the poly-

gon of an indefinite number of sides becomes the same

thing as the circumference of the circle." f Or, again,

" by an infinite approach the polygon and the circle

coincide." Now when he informs the student that

"the usual expedients for avoiding this" principle

" result in tedious methods, involving the same idea

only under a more covert form," he certainly requires

him to walk by faith, and not by sight or science. It

was, as we have said, precisely to avoid tlie principle

that any polygon ever coincides exactly with a circle,

that the ancient geometers resorted to the reductio ad

absurduin, which, from that, day to this, has been

usually adopted for the purpose of avoiding that prin-

ciple. "As they admitted only perfectly rigorous

demonstrations," says Carnot, as well as every other

writer on the subject, "they believed that they could

not permit themselves to consider curves as polygons

of a great number of sides." Hence they resorted to

the indirect and tedious method of demonstration by

the reductio ad abmrdum. This method was, in fact,

a protest against the principle in question, a repudia-

tion of it as false and spurious. If the ancient

geometers could have adopted that principle, which

•» Hacldey's Geometry, Preface. f Proposition LXXI.



24 THE miLOSOPHY OF MATSEMATICS.

looked them so fully in the face, they would have

been as short and easy in their demonstrations as some

modern teachers of the science. But they believed that

the fewness of its steps is not the only excellence of a

mathematical demonstration. Aiming at a clearness

and rigor which would not admit of controversy, they

refused to " consider a circle as a polygon of a great

number of sides," however great the number. Did

they, then, fail to escape the principle in question?

Does the reduetio ad absurdum, their great expedient

for avoiding it, really involve that principle ? There

is certainly not the least appearance of any such thing,

and no such thing was ever before suspected. On the

contrary, it has, hitherto been universally seen and

declared that the reduetio ad absurdum does not in-

volve the principle from which it sought to escape.

Yet are we now gravely told, by a distinguished

teacher of geometry, " that the usual ex2)edients for

avoiding" that principle only "result in tedious

methods involving" precisely the same thing ! That the

reduetio ad absurdum, the one great expedient for this

purpose, is, after all, a miserable blunder, involving

the very principle from which its authors intended to

effect an escape ! But if that principle is false, then

the weak and tottering foundation of those portions of

geometry which it is made to support will require

something more than a mere assertion to bolster it up

and render it secure.

A third teacher of mathematics and compiler of

text-books has, in his " Elements of Geometry," made

a similar use of the principle that " a circle is identi-

cal with a circumscribed regvlav -polygon of an infinite
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number of sides." * Now I do not deny that very-

high authority may be found for this principle, at least

among the moderns ; but then the foundations of ma-

thematical science rest, not upon authority, but upon

its own intrinsic evidence. Indeed, if there had not

been high authority for the truth of the principle in

question, it is believed that the more humble teachers

of geometry would scarcely have ventured to assert it

as one of the fundamental assumptions or first prin-

ciples of the science. It gets rid, it is true, of the

tedious and operose reductio ad absurdum, and seeks

to banish it from the regions of geometry. But will

not the stern and unrelenting reductio ad ah^irdum

have its revenge on this modern pretender to its ancient

honors?

I object to the above so-called principle of "^'the

infinitesimal system," first, because it is obscur(5. It

neither shines in the light of its own evidence, nor

in the light of any other principle. That is to say, it

is neither intuitively clear and satisfactory to the

mind, nor is it a demonstrated truth. Indeed, the

authors above referred to do not even pretend to de-

monstrate it; they merely assume it as a fundamental

postulate or first principle. They profess to see, and

require their pupils to see, what neither a Euclid nor

an Archimedes could clearly comprehend or embrace.

Is this because they belong to a more advanced age,

and can therefore see more clearly into the first prin-

ciples of science than the very greatest minds of an-

tiquity ? I doubt if much progress has been made

» Elements of Geometry. By James B. Dodd, A.M., Morrison

Professor of Mathematics and Natural Philosophy in Transylvania

University. Book V., Theorem XXVIII.

3 B
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since the time of Euclid and Archimedes with respect

to the precise relation between a circle and an inscribed

or a circumscribed polygon with an infinite number

of sides. It is certain that the mathematicians of the

present day are not agreed among themselves respect-

ing the truth or the possibility of the conception in

question. Thus, for example, one of the teachers of

the science rejects the principle in question, " because,"

says he, " strictly speaking, the circle is not a polygon,

and the circumference is not a broken line."* An-
other teacher of the science says, after having alluded

to Euclid, that " modern writers have arrived at many
of his conclusions by more simple and concise methods;

but in so doing they have, in most instances, sacri-

ficed the rigor of logical demonstration which so justly

constitutes the great merit of his writings." f Accord-

ingly, he rejects from the elements of geometry the

principle that a circle is a polygon of an infinite num-

ber of sides, and returns to the reductio ad absurdum

of Euclid.

Now, what right have the teachers of geometry to

require their pupils to assume as evident a principle

which the very masters of the science are utterly un-

able to receive as true? What right have they to

require the mere tyro in geometry to embrace as a first

principle what neither a Euclid nor an Archimedes

could realize as possible? Even if their principle

were true, what right have they to give such strong

meat to babes, requiring them to open their mouths,

* Bay's Plane and Solid Geometry, Art. 477.

f Elements ofGeometry. ByGeorge R.Perkins, A.M., LL.D., Prin-

cipal and Professor of Mathematics in the New York State Normal
School ; author of Elementary Arithmetic, Elements of Algebra, etc.,

etc., etc.
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if not to shut their eyef?, and Implicitly swallow down
as wholesome food what the most powerful veterans

are so often unable to digest?

The greatest mathematicians and philosophers have, \

indeed, emphatically condemned the notion that a
J

curve is or can be made up of right lines, howeveiy

small. Berkeley, the celebrated Bishop of Cloyne,

and his great antagonist, Maclaurin, both unite in re-

jecting this notion as false and untenable. Carnot, yf

D'Alembert, Lagrange, Cauchy, and a host of other

illustrious mathematicians, deny that the circumference

of a circle, or any other curve, can be identical with

the periphery of any polygon whatever. This, then,

is not one of the first principles of the science of mathe-

matics. Even if it were true, it would not be entitled

to rank as a first principle or postulate, because it

admits of doubt, and has, in fact, been doubted and

denied in all ages by the most competent thinkers and

judges. Whereas, it is the characteristic of all first

principles in geometry that they absolutely command

the assent of all sane minds, and rivet the chain of

inevitable conviction on the universal reason of man-

kind.

In the second place, I object to the above principle,

or rather the above conception, of the infinitesimal

analysis, because it is not true. Eveiy polygon is, by

its very definition, bounded by a broken line. Now, is

the circle bounded by a broken line or by a curve ?

Every line is that which, according to its definition,

has length. How, then, can a right line, which never

changes its direction from one of its ends to the other,

coincide exactly with a curve line, which always changes

its direction ? The polygon and the circle are, indeed,
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always defined in geometry as distinct and different

entities or objects of thought. Why, then, should their

definitions be broken up and confounded, as if there

were no essential difference between the things defined?

Is riot this done in the darkness of the imagination

rather than in the pure light of reason ? If the circle

is only one species of the polygon, why not say so in

our definitions, and thus carry this first principle down

into the very foundations of the science ? Wliy dis-

tinguish and then confound them ? The truth is, the

principle that a curve is made up of indefinitely small

right lines is one of those false conceptions of the in-

finitesimal method which, as we shall hereafter see,

have formed themselves into the clouds and darkness

that have so long hung around the heights of the

transcendental analysis. If, then, we can bring no

better principle than this from those heights down into

the elements of geometry, had we not j^st as well

bring nothing at all ? Here, at least, in the first ele-

ments, let all be perfectly clear and incontestable. If

' we cannot have any principles or laws of light run-

ning from the lowest to the highest branches of the ma-

thematics, and binding them all in one, at least let us

have no universal laws of darkness.

How the mind of any one, indeed, ever happened

to adopt the principle under consideration, and build

on it as one of the foundations of mathematical science,

is a very curious question, and can be answered only

by a careful study of the history of the infinitesimal

analysis. When I come to consider that analysis, as

developed by Cavalieri, Pascal, Leibnitz, and Newton,

I shall return to the examination of this principle and

refute it, both by tracing it to its source (which is often
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the best Avay to refute an error), and by showing the

contradictions and absurdities in wliich it is involved.

The most celebrated of the above writers on the

elements of geometry does not seem, indeed, to have

been long satisfied with his own demonstration. Hence,

in a revised edition of his work* the principle in ques-

tion is not seen, and the word limit is substituted in

its place. I say the word limit, because this term is

not adequately defined by him. "The limit of the

perimeter" (of the inscribed polygon), says he, " is the

circumference of the circle ; the limit of the apotheni

is the radius, and the limit of the area of the polygon

is the area of the circle. Passing to the limit, the

expression for the area becomes," and so forth. Now
what does the author mean by the expression " passing

to the limit?" Does he mean that tlie variable poly-

gon will ultimately become the circle or pass into its

limit ? If so, then he has made no change whatever

in the structure of his former demonstration, except

the substitution of an undefined term for an unintelli-

gible principle. Yet he evidently means that the

polygon will coincide with the circle ; for after saying

that " the circumference is the limit of its (variable)

perimeter," he adds, that " no sensible error can arise

in supposing that what is true of such a polygon is

also true of its limit, the circle." f No sensible error

!

But can any error at all arise ? If so, then the poly-

gon does not, strictly speaking, coincide with the

circle. But he relieves the student from all hesitation

on this point by assuring him, in the next sentence,

that " the circle is but a polygon of an infinite number

* Davies' Legendre, revised edition of 1856.

t Book v., Prop. XII., Scholium 2.

3»
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of sides." Why, then, attempt to introduce the un-

necessary idea of limits ? If the polygon really coin-

cides with the circle, or if the circle is only one species

of the polygon, then, most assuredly, whatever is true

of every regular polygon is also true of the circle.

Why, then, introduce the wholly unnecessary notion

of a limit? Was this merely to conceal a harsh con-

ception by the use of a hard term ?

It is certain that the author did not long continue

satisfied with this form of his demonstration ; for, in a

still later revised edition of his Geometry, he dismisses

the notion of limits altogether, and returns still more

boldly to the use of " the infinite." * Thus he builds

the demonstration of all the same theorems on the

principle that " if the number of sides be made in-

finite, the polygon will coincide with the circle, the

perimeter with the circumference, and the apothem

with the radius." f Or, more simply expressed, on

the idea that " the circle is only a regular polygon of

an infinite number of infinitely small sides." But

who can see what takes place in the infinite ? We are

told that two parallel lines meet at infinity, or if pro-

duced to an infinite distance. If so, it would be easy

to prove that two parallel lines may be perpendicular

to each other. We are also told that many other

^things, equally strange and wonderful, happen at an

» infinite distance. Hence I hope, for one, that it is the

destination of geometry to be rescued from the outer

darkness of the infinite and made to shine in the pure,

unmixed light of finite reason.

But if the circle is really a regular polygon with

an infinite number of sides, then let this be shown
» See edition of 1866. f Book V., Prop. XIV.
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once for all, and afterwards proceeded on as an estab-

lished principle. Why should constructions be con-

tinually made in every demonstration, and the same

process repeated, only to arrive at the conclusion that

a circle has the properties of a regular polygon with

an infinite number of sides ? Why continue to estab-

lish that which is already supposed to be established ?

If a circle is really " but a regular polygon with an

infinite number of sides," then it is evident that the

cylinder is only a right prism, and the cone only a

right pyramid with such polygons for their bases, and

the sphere itself is only a solid generated by the revo-

lution of such a polygon around one of its diameters.

Hence all the theorems relating to the circle and the

"three round bodies," which are demonstrated in

Book VIII. of the work before us, are only special

cases of the propositions already demonstrated in re-

gard to the regular polygon, the right cone, and the

volume generated by the revolution of a regular poly-

gon around a line joining any two of its opposite ver-

tices. Why, then, after having demonstrated the gene-

ral truths or propositions, proceed, with like formality,

to demonstrate the special cases ? Is this conformed

to the usage of geometers in other cases of the same

kind ? Do they prove, first, that the sum of the angles

of any triangle is equal to two right angles, and then

prove this of the isosceles triangle, or of any other

special case of that figure ? If not, why prove what

is true of all regular polygons whatever, and then

demonstrate the same thing in relation to the special

case of such a polygon called the circle ? The only

reason seems to be that although they assume and

assert that "a circle is but a regular polygon of an
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infinite number of sides," they are not clearly con-

vinced of the truth of this assumption themselves.

If this assumption may be relied on as intuitively

certain, or as unquestionably true, then how greatly

might the doctrine of the "three round bodie§" be

simplified and shortened ! All the theorems relating

to them would, indeed, be at the very most only sim-

ple corollaries flowing from propositions already de-

monstrated. Thus, the volume of the cylinder as a

species of the right prism would be equal to its base

into its altitude, and its convex surface equal to the

periphery of its base into the same line. In like

manner the volume of the cone, considered as a right

pyramid, would be equal to its base into one-third of

its altitude, and its convex surface equal to the peri-

phery of its base into one-half of its slant height. In

the same way we might deduce, or rather simply re-

state, all the theorems in regard to the frustum of a

cone, and all those which relate to the sphere. But wliat,

then, would become of Book VIII. of the Elements ?

Would it not be far too short and simple? As it is,

what it lacks in the substance it makes up in the form

of its demonstrations. It is now spread, like gold-

leaf, over twenty goodly octavo pages ; and yet, if the

principle on which it is based be really true and satis-

factory, the whole book might, be easily contained in

a few lines, without the least danger of obscurity.

Strip the demonstrations of this book, then, of all

their needless preparations and forms, and how small

the substance! Remove the scaffolding, and how

diminutive the edifice! It would scarcely make a

decent appearance in the market.

But if we reject the notion that the inscribed regu-
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lar polygon ever becomes equal to the circle, or coin-

cides with it, what shall ^ve do ? If we deny that they

ever coincide, how shall we bridge over the chasm
between them, so as to pass from a knowledge of right-

lined figures and volumes to that of curves and curved

surfaces? Shall we, in order to bridge over this

chasm, fall back on the reductio ad absurdum of the

ancients? or can we find a more short and easy pas-

sage without the sacrifice of a perfect logical rigor in

the transit ? This is the question. This is the very

first problem which is and always has been presented

to the cultivators of the infinitesimal method. Is

there, then, after the lapse and the labor of so many
ages, no satisfactory solution of this primary problem ?

It is certain that none has yet been found which has

become general among mathematicians. I believe

that such a solution has been given, and that it only

requires to be made known in order to be universally

received, and become a possession for ever— a xTr^fm i^

dec more precious even than the gift of Thucydides.

But there are mighty obstacles to the diffusion of

such knowledge. The first and the greatest of these

is the authority of great names ; for, as was said more

than two thousand years ago, " With so little pains is

the investigation of truth pursued by most men, that

they rather turn to views already formed." Espe-

cially is this so in a case like the present, since the

great creators of the calculus, before whom we all bow

with the most profound veneration, are very naturally

supposed to have known all about the true analysis

and exposition of their own creation. But the fact is

demonstrably otherwise. Newton himself revealed

the secret of the material universe, showing it to be a

B*
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fit symbol of the oneness, the wisdom, and the power

of its divine Author ; but he left the secret of his own

creation to be discovered by inferior minds. May we

not, then, best show our reverence for Newton, as he

showed his for God, by endeavoring, with a free mind,

to comprehend and clearly explain the mystery of his

creation ?

The second of these obstacles is, that few men can

be induced to bestow on the subject that calm, patient,

and protracted attention which Father Malebranche so

beautifully calls " a natural prayer for light." Hence,

those Avho reject the solutions most in vogue usually

precipitate themselves and their followers into some

false solution of their own. Satisfied with this, al-

though this fails to satisfy others, their investigations

are at an end. Henceforth they feel no need of any

foreign aid, and consequently the great thinkers of the

past and of the present are alike neglected. Their own

little taper is the sun of their philosophy. Hence, in

their prayerless devotion to truth, all they do is, for

the most part, only to add one falsehood more to the

empire of darkness. I could easily produce a hundred

striking illustrations of the truth of this remark. But

with the notice of one in one of the books before me,

I shall conclude this first chapter of my reflections.

It is expressly denied in the book referred to that

a polygon can ever be made to coincide with a circle.

An inscribed polygon, says the author, " can be made

to approach as nearly as we please to equality with

the circle, bvt can never entirely reach it." * Accord-r

ingly, he defines the limit of a variable in general to

be that constant magnitude which the variable can be

• Ray's Plane and Solid Geometry, Art. 473.
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made to approach as nearly as we please, but which

it "can never quite reach." Now this is perfectly-

true. For, as the author says, the polygon, so long

as it continues a polygon, can never coincide with

a circle, since the one is bounded "by a broken line"

and the other by "a curve." Here, then, there is

a chasm between the inscribed variable polygon and

its limit, the circle. How shall this chasm be passed?

How shall we, in other words, proceed from a know-

ledge of the properties of the polygon to those of the

circle? The autlior bridges over, or rather leaps, this

chasm by means of a newly-invented axiom. " "What-

,

ever is true up to the limit," says he, " is true at the

limit." * That is to say, wliatever is true of the poly-

gon in all its stages, is true of the. circle. Now is not

this simply to assume the very thing to be established,

or to beg the question ? We want to know what is

true of the circle, and we are merely told that what-

ever is always true of the polygon is also true of the

circle ! In this the author not only appears to beg

the question, but also to contradict himself. For,

according to his own showing, the polygon is always,

or in all its stages, bounded by a broken line, and

" the circumference of the circle is not a broken line." f /

Again, he says that the polygon is always less than

the circumscribed circle, and this certainly cannot be

said of the circle itself. He appears to be equally

unfortunate in other assertions. Thus, he says, "what-

ever is true of every broken line having its vertices in

a curve is true of that curve also." J Now the broken

line has " vertices" or angular points in the curve; has

the circumference of a circle aiiy vertices in it ? Again,

» Art. 198. t Art. 477. t Art. 201.
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" whatever is true of any secant passing through a

point of a curve is true of the tangent at that point." *

Now every secant cuts the circumference of the circle

in two points, and, as the author demonstrates, the

tangent only touches it in one point. Thus, his

assumption or universal proposition is so far from

being an axiom that it evidently appears not to be

true.

The author does not claim the credit of having dis-

covered or invented this new axiom. " In explaining

the doctrine of limits," says he, " the axiom stated by

Dr. Whewell is given in the words of that eminent

scholar." f Now Dr. Whewell certainly had no use

whatever for any such axiom. For, according to his

view, the variable magnitude not only approaches as

nearly as we please, but actually reaches its limit.

Thus, says he, "a line or figure ultimately coincides

with the line or figure which is its limit."J Now,

most assuredly, if the inscribed polygon ultimately

coincides with the circle, then no new axiom is neces-

sary to convince us that whatever is always true of

the polygon is also true of the circle. For this is only

to say that whatever is true of the variable polygon in

all its forms is true of it in its last form—a truism

which may surely be seen without the aid of any

newly-invented axiom. According to his view, in-

deed, there was no chasm to be bridged over or spanned,

and consequently there was no need of any very great

labor to bridge it over or to span it. His axiom was,

at best, only a means devised for the purpose of pass-

.

ing over nothing, which might have been done just as

well by standing still and doing nothing. The trutk^^

» Art. 201. f Preface. J Doctrine of Limits, Book II., Art. i

i
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is, however, that although he said the two figures

Avould ultimately "coincide," leaving no chasm be-

tween them to be crossed, he felt that there would be

one, and hence the new axiom for the purpose of

bridging it over. But the man who can adopt such a

solution of the difiiculty, and, by the authority of his

name, induce others to follow his example, only inter-

poses an obstacle to the progress of true light and

knowledge. Indeed, the attempts of Dr. Whewell to

solve the enigmas of the calculus are, as we shall have

occasion to see, singularly awkward and unfortunate;

showing that the depth and accuracy of his knowledge

are not always as" wonderful as its vast extent and

variety.



CHAPTER II.

DEFINITION OF THE FIRST PRINCIPLES OF THE
INFINITESIMAL METHOD.

In the preceding chapter it has been shown that

it is an error to consider a circle as a polygon. It is

certainly a false step to assume this identity, in any

case, as a first principle or postulate, since so many

mathematicians of the highest rank regard it as evi-

dently untrue. Thus Carnot, for example, says, " It

is absolutely impossible that a circle can ever be con-

sidered as a true polygon, whatever may be the num-

ber of its sides." * The same position is, with equal

emphasis, assumed by Berkeley, Maclaurin, Euler,

D'Alembert, Lagrange, and a host of other eminent

mathematicians, as might easily be shown, if neces-

sary, by an articulate reference to their writings. |

But, indeed, no authority is necessary either to estab-

lish or to refute a first principle or.postulate in geome-

try. This is simply a demand upon our reason which

is only supported by assertion, and put forth either to

be affirmed or denied. If the reason of mathematicians f

does not affirm it, then is there an end of its exist-

ence as a first principle or postulate. As no effort is

made to prove it, so none need be made to refute it.

For no one has a right to be heard in geometry who

makes the science start from unknown or contradicted <

* Eeflexions, etc, chapter I., p. U.
38
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principles, especially from such principles as have, in

all ages, been rejected by the mathematicians of the

very highest order. Yet has there been, in modern
times, an eager multitude of geometers who rush in

where a Euclid and an Archimedes feared to tread.

Let us sec, then, if we may not find a safer and more
satisfactory road to the same result.

The problem to be solved is, as we have seen, how
to pass from the properties of rectilinear figures to those

of curvilinear ones. Or, in particular, how to pass

from the known properties of the polygon to a know-

ledge of the properties of the circle. Since no poly-

gon can, ex hypothesi, be found which exactly coincides

with the circle, we are not at liberty to transfer its

properties to the circle, as if it were a polygon with a

great number of sides. For, having inscribed a regu-

lar polygon in a circle, and bisected the arcs sub-

tended by its sides, we may double the number of its

sides, and continue to repeat the process ad libitum;

and yet, according to hypothesis, it will never exactly

coincide with the circumscribed circle. There will,

after all, remain a chasm between the two figures

—

between the known and the unknown. Now the ques-

tion is, how to bridge over this chasm with a perfectly

rigorous logic in order that we may clearly, directly,

and expeditiously pass from the one side to the other,

or from the known to the unknown? The method

of limits affords a perfect solution of this question.

Nor is this all. For, in the clear and satisfactory solu-

tion of this problem, the very first relating to the in-

finitesimal analysis, it opens, as we shall be enabled

to see, a vista into one of the most beautiful regions

of science ever discovered by the genius of man. Let
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US, then, proceed to lay down the first principles of

this method, and produce the solution of the above

problem.

Tlie limit of a variable.—^When one magnitude takes

successively values which approach more and more

that of a constant magnitude, and in such manner that

its diiference from this last may become less than any

assigned magnitude of the same species, we say that

the first approaches indefinitely the second, and that the

second is its limit.

Thus, the limit of a variable is the constant quantity

which the variable indefinitely approaches, but never

reaches,*

" The importance of the notion of a limit" says Mr.

Todhunter, "cannot be over-estimated; in fact, the

whole of the differential calculus consists in tracing

the consequences which follow from that notion."!

Now this is perfectly true. Duhamel says precisely

the same thing. But, then, the consequences of this

notion or idea may be traced clearly, and every step

exhibited as in the open light of day ; or they may be

traced obscurely, and almost the whole process con-

cealed from the mind of the student behind an im-

penetrable veil of symbols and formulae. They may

be shown to flow, by a perfectly clear and rigorous

course of reasoning, from the fundamental definition

or idea of the infinitesimal method, or they may be

deduced from it by a process which looks more hke

legerdemain than logic. In this respect there ap-

pears to be a vast difference between the above-named j

* Elements de Caleul Infinitesimal, par M. Duhamel, Vol. I,

Book I., chap. I., p. 9.

f Dif. and Int. Calculus, p. 4.
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mathematicians. The student who follows the guid-

ance of the one sees everytliing about him, and is at

every step refreshed and invigorated by the pleasing

prospects presented to his mind. On the contrary,

the student who pursues the analysis of the other re-

sembles, for the most part, tlie condition of a man who
feels his way in the dark, or consents to be led blind-

fold by a string in the hand of his guide,

"7 The very first point of divergence in these two very

different modes of development is to be found in the

definition of the all-important term limit. In the

definition of M. Duhamel, the variable is said not to

reach its limit, while in that of Mr. Todhunter this

element of the " notion of a limit" is rejected. " The

following may," says he, " be given as a definition

:

The limit of a function (or dependent variable) for

an assigned value of the independent variable, is that

value jrom wMoh the function can be made to differ as

little as we please by making the independent variable

approach its assigned value." * There is, in this defini-

tion, not a word as to whether the variable is supposed

to reach its limit or otherwise. But the author adds,

"Sometimes in the definition of a limit the words

' that value which the function never actually attains'

have been introduced. But it is more convenient to

omit them." Now this difference in the definition of

a limit may, at first view, appear very trifling, yet in

reality it is one"of vast importance. If, at the outset

of such inquiries, we diverge but ever so little from the

strict line of truth, we may ultimately find ourselves

involved in darkness and confusion. Hence, it is

necessary to examine this difference of definition, and,

* Chapter I™ p. 6.

4*
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if possible, ascertain which of the two guides we should

follow.

Is the definition of a limit, then, of the one all-im-

portant idea of the infinitesimal calculus, a mere mat-

ter of convenience, or should it be conformed to the

nature of things? The variables in the calculus are

always subjected to certain conditions or laws of change,

and in changing according to those conditions or laws

they either reach their limits or they do not. If they

do reach them, then let this fact be stated in the defi-

nition and rigidly adhered to without wavering or

vacillation. Especially let this be done if, as in the

work before us, the same fact is everywhere assumed

as unquestionably true. Thus, the limit of a variable

is supposed to be its "limiting value,"* or the last

value of that variable itself. Again, he still more

explicitly says, " any actual value of a function may
be considered as a limiting value." f Having assumed

that the variable actually reaches its limit, it would,

indeed, have been most inconvenient to assert, in his

definition, that it never reaches it; for this would

have been to make one of his hypotheses contradict

the other. But if it be a fact that the variable does

reach its limit, and if this fact be assumed as true,

then why not state it in the definition of a limit ?

The reason is plain. This, also, would have been

very inconvenient, since the author would have found

it very difficult to verify the correctness of his defini-

tion by producing any variables belonging to the in-

finitesimal analysis that actually reach their limits.

He might easily find lawless variables, or such as

occur to the imagination while viewing things in the

* Chapter I., p. 6. ( Ibid.
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abstract, -which may reach their limits. But such

variables are not used as auxiliary quantities in the

infinitesimal analysis. They would be worse than

useless in all the investigations of that analysis. Hence,

if he would verify his assumption, he must produce

variables of some use in the calculus which are seen

and known to reach their limits. Can he produce

any such variables ? He has certainly failed to pro-

duce even one.

In order to illustrate his "notion of a limit," he

adduces the geometrical progression l + i + i + J+,
etc. Now, as he truly says, "the limit of the sum
of this series, when the number of terms is indefinitely

increased, is 2." But does this sum actually reach its

limit 2 ? Or, in other words, if we continue to make
each term equal to one-half of the preceding term,

shall we ever reach a term equal to nothing? Or,

in other words again, is the half of something ever

nothing? If so, then two nothings may be equal to

something, and, after all, the indivisibles of Cavalieri

was no mathematical or metaphysical dream. If we
may divide a quantity until it ceases to have halves, or

until one-half becomes absolutely nothing, then have

the mathematical world greatly erred in rejecting these

indivisibles as absurd, and we may still say that a line

is equal to the sum of an indefinite number of points,

a surface to an indefinite number of lines, and a volume

to an indefinite number of surfaces. But is not the

mathematical world right ? Is it not a little difficult

to believe that the half of something is nothing ? Or
that a line which has length may be so short that its

half will be a point or no length at all ? Be this as it

may, the infinite divisibility of magnitude, as well as.
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the opposite doctrine, may be a metaphysical puzzle

;

but it has no right to a place in mathematics, much

less to the rank of a fundamental assumption or postu-

late. But it must be regarded as such if we may assert

that the sum of the progression l + i + i+i+, etc.,

actually reaches its limit 2 by being sufficiently far

produced. We shall certainly escape such dark and

darkening assumptions if we can only find a method

foE passing, in the order of our knowledge, from the

variable to its limit without supposing the variable

itself to pass to its limit. Precisely such a method we

have in the work of Duhamel, and nothing approxi-

mating to it in the differential calculus of the English

mathematician.*

Our author gives another illustration of the idea of

a limit. " Although approaches as nearly as we

please to the limit, it never actually attains that limit." "^

Both the words and the italics are his own. Here it

is said that the variable "never actually attains its

limit," and this, I apprehend, will be found to be the

case in relation to every variable really used in the

infinitesimal method. It will, at least, be time enough

to depart from the definition of Duhamel when vari-

ables are produced from the calculus which are seen to

reach their limits without violating the law of their

* It has often been a subject of amazement to my mind that the

English mathematicians derive so little benefit from the improve-

ments introduced by their French neighbors. Why, in the republic

of letters and science, should there not be a free interchange of ideas

and improvements ? The French were not slow to borrow the methods

of Newton ; but the English seem exceedingly slow, if not disin-

clined, to borrow from a Carnot, a Cauehy, or a Duhamel the im-

provements which they have made in these methods.

f Chapter I., p. 6.
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increase or decrease. If such variables should be

found, then, since some are admitted to exist which

never reach their limits, such quantities should be

divided into two classes and discussed separately.

That is to say, the analyst should then treat of those

variables which reach their limits and of those which

never reach their limits. But it is to be hoped that

he will cease to take any further notice of the first

class of variables until some such can be found that

are capable of being used in the calculus.

Let us return to the original instance of the circle

and the polygon, because this will make the idea per-

fectly plain, Duhamel knows, as Euclid demonstrated,

that such a variable polygon may be made to approach

the dimensions of the circle as nearly as one pleases.

He knows this, indeed, just as well as he knows any

property of the polygon itself, or of any other figure

in geometry. He takes his stand, then, upon the

demonstrated truth that the difference between the

dimensions, or the areas, of the two figures may be

made less than any "grandeur designee," than any

assigned magnitude of the same species. This know-

ledge, this clearly perceived, this demonstrated truth,

is the point from which he sets out to bridge the

chasm between the one figure and the other. He
never supposes the two figures to coincide or to be-

come equal, because he has the means of spanning the

chasm which separates them without either denying

its existence or filling it up with doubtful propositions

about what may be supposed to take place at the end

of an infinite process. He has no use for any such

assumptions or assertions even if true, because he has

a much clearer and better method to obtain the same
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result. But before we can unfold that method in a

clear and perspicuous manner it will be necessary to

consider his next definition.

" We call," says he, " an infinitely small quantity, or

simply an infinitesimal, every variable magnitude of which

the limit is zero.

"For example, the difference between any vari-

able whatever, and its limit, is said to be infinitely

small, since it tends towards zero. Thus the difference

of the area of a circle from that of the regular inscribed

polygon of which the number of sides is indefinitely

multiplied, is infinitely small. It is the same with

the difference between a cylinder and an inscribed

prism, or a cone and the inscribed pyramid, etc., etc.

"We cite these particular cases in order to indicate

some examples, but infinitely small quantities may pre-

sent themselves in a multitude of circumstances where

they are not differences between variables and their

limits."

It is to be regretted, perhaps, that Duhamel did

not use the term "infinitesimal" instead of the more

ambiguous words " infinitely small," in order to ex-

press the idea which he has so clearly defined. There

is, however, nothing obscure in his meaning. An in-

finitely small quantity is, as he defines it, not a fixed

or constant quantity at all, much less one abso-

lutely small, or one beyond which there can be no

smaller quantity. It is, on the contrary, always a

variable quantity, and one which has zero for its

limit. Or, according to his definition of a limit, an

infinitesimal is a variable which may be made to ap-

proach as near to zero as one pleases, or so near as to

reduce its difference from zero to less than any assigned
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quantity. Thus, it never becomes infinitely small, in

the literal sense of the terms, or so small that it cannot

be made still smaller. It is, on the contrary, its dis-

tinguishing characteristic that it may become smaller

and smaller without ever acquiring any fixed value,

and without actually reaching its limit, zero. It is

from these two ideas of a limit and an infinitesimal,

says he, that the whole system of truths contained in

the calculus flows in the form of logical consequences.

But in order to develop these ideas, or apply them to

the investigation of truth, he found it necessary to

establish

THE FUNDAMENTAL PRINCIPLE OF LIMITS.

It is precisely for the want of this principle, and a

knowledge of its applications, that so many mathema-

ticians, both in England and America, have discussed

the processes of the differential calculus in so obscure

and unsatisfactory a manner. This principle is indis-

pensable to render the lamp of the infinitesimal ana-

lysis a sufficient light for our eyes, as well as guide for

our feet. This principle is as follows :
—

" If two variable quantities are C07istantly equal and

tend each toward a limit, these two limits are necessarily

equal.—In fact, two quantities always equal present

only one value, and it seems useless to demonstrate

that one variable value cannot tend at the same time

towards t^s'o unequal limits, that is, towards two con-

stant quantities different from one another. It is,

moreover, very easy to add some illustrations which

render still clearer, if possible, this important propo-

sition. Let us suppose, indeed, that two variables

always equal have different limits, A and B ; A being,
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for example, the greatest, and surpassing B by a deter-

minate quantity J. The first variable having A for

a limit will end by remaining constantly comprised

between two values, one greater the other less than A,

and having as little difference from A as you please

;

let us suppose, for instance, this difference less than

J J. Likewise the second variable will end by re-

maining at a distance from B less than J J. Now it

is evident that then the two values could no longer

be equal, which they ought to be, according to the

data of the question. These data are, then, incom-

patible with the existence of any difference whatever

between the limits of the variables. Then these limits

are equal.

The following principle is more general and more

useful than that laid down by Duhamel, and, besides,

it admits of a rigorous demonstration

:

If, while tending toward their respective limits, two

variable quantities are always in the same ratio to

each other, their limits will be to one another in the same

ratio as the variables.

Let the lines A B and A C represent the limits of

any two variable magnitudes which are always in the

same ratio to one another, and let Ab, Ac represent

A b c B' b' B C^ c' C C"

two corresponding values of the variables themselves

;

then Ab : Ac : : A B : A C.

If not, then Ab : Ac : : A B : some line greater or

less than A C. Suppose, in the first place, that Ab

:

Ac : : AB : A C; AC being less than A C. By

hypotliesis, the variable Ac continually approaches

A C, and may be made to differ from it by less than
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any given quantity. Let Ab and Ac, then, continue

to increase, always remaining in the same ratio to-one

another till Ac differs from A C by less than the quan-

tity C'C; or, in other words, till the point c passes

the point C, and reaches some point, as c', between C
and C, and b reaches the corresponding point b'.

Then, since the ratio of the two variables is always the

same, we have
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Cor. If two variables are always equal, tlidr limits

are equal.

The above truth is, as has already been said, the

great fundamental principle of the infinitesimal ana-

lysis, which, being demonstrated once for all by the

rigorous method of the reductio ad ahsurdum, will

easily help us over a hundred chasms lying between

rectilinear and curvilinear figures, as well as between

volumes bounded by plane surfaces and those bounded

by curved surfaces, and introduce us into the beauti-

ful world of ideas beyond those chasms. But before

we can apply this prolific principle to the solution of

problems or to the demonstration of theorems, it will

be necessary to establish one or two preliminary pro-

positions. These are demonstrated by Duhamel as

follows

:

1. Tlie limit of the sum of the variables x,y,z...u,

of any finite number whatever which have respectively for

their limits a, b, o . . ,1, positive gr negative, is (lie

algebraic sum of those limits. In fact, the variables

X, y, z . . . u can be represented by a + a, ^b + /?,..

.

1 + ^, the differences «, /9, . . . A having each zero for

its limit. We have then x+y + z+". + u = (a +
b + c + . . . 1) + (« + /9 + . . . + /i). But « + i3 +
. . .X tends towards the limit zero, since it is thus

with each of the terms in any finite number whicli

composes that quantity. Then the limit of the second

member, and consequently of the first, which is always

equal to it, is a+ b + c + . . . + 1, which was to be

demonstrated.

2. The limit of the product of several variables is the

pi-odvot of their limits.—In fact, if ,we employ the same

denomination as in the preceding case, we shall have
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X y z . .
.
u = (a + «) (b + /3 +) (c + r) • • • (1 + ''O

=
a b c . . . 1 + w, (u designating the sum of a finite num-

ber of terms, each having zero for its limit, since they

contain as factors at least one of the quantities a, /?, y

...?., each of which has zero for its limit. We see,

then, that the second member, or the first x y z . . . u,

has for its limit a b c . . . 1, which was to be demon-

strated.

3. The limit of the quotient of two variables is tJie

quotient of their limits.—In fact,

X a+« a. ha— a/3

y~'b+^"b^b(b+ ^)"

But the. denominator of the last fraction can be made

as nearly as we please equal to b^, which is a constant

quantity different from zero; its numerator tends

towards zero; then the fraction has zero for its limit.

The limit of - is then - , the proposition to be demon-
y h

strated. -

4. Tlie limit of a power of a variable is the same

power of its limit.—For, supposing the degree of its

power to be the entire number, m, then x" is the pro-

duct of m factors equal to x, and, according to the

case 2, the limit of x"" will be a".

Let m = -, p and q being any entire numbers what-

p 1 ,.

ever; xi is the power p of xi; then, according to the
p

preceding case, the limit of xi is the p power of the
1 _

limit x5 or of i/x ; it remains to find this last. But x,

being the product of q factors equal to 'Vx, has for its

limit the q power of the limit of ^x, and as x has for
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its limit a, it follows that a is the q power of the limit

_ _ _ p

of l/'^x, or that l^x has for a limit Va. Then x' has
p

for a limit a^i, as we have enunciated.

These principles will be found exceedingly easy in

practice, as well as clear and rapid in arriving at the

most beautiful results. I shall begin with cases the

most simple, and proceed with equal ease and clear-

ness to solve problems and prove theorems which are

usually esteemed more difficult.

APPLICATION TO SIMPLE QUESTIONS IN THE ELEMENTS

OF GEOMETRY.

1. Tlie surfaces of any two circles are to each oilier

as the squares of their radii.

Let S, S' be the surfaces of any two circles, and E,

W their radii. These surfaces, we know, are the

limits of two regular inscribed polygons, whose sides,

always equal in number, are suj)posed to be doubled

an indefinite number of times. But these polygons

are always to each other as the squares of the radii of

the circumscribed circles. Hence their limits, the

circles themselves, are to each other in the same ratio.

That is,

S : S' : : E^ : E'^,

which is the proposition to be demonstrated,

2. Tlie circumferences of any two circles are to each

other as their radii.

Let the inscribed auxiliary polygons be as in the

last case. The circumferences of the circles are-then

the limits of the peripheries of the polygons. But

these peripheries are to' each other as the radii of the
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circumscribed circles. Hence their limits, the circum-

ferences, are in the same ratio to each other. That is,

if C, C be circumferences, we shall have

C : C : : R : R',

the proposition to be demonstrated.

3. The area of a circle is equal to half its circum-

ference into its radius.

Let P denote the inscribed auxiliary polygon, a its

apothem, and p its periphery. Then we shall always

have
P = ia,p.

But if two variables are always equal, their limits will

be equal. Hence
S = |R C,

since the limit of P is S, and the limit of the product

J a, p is the product of the limits J E. C. Q. E. D.

4. The volume of a cone is equal to the product of its

base by one-third of its altitude.

The cone is the limit of a pyramid having the same

vertex, and for its base a polygon inscribed in the base

of the cone, of which the number of sides may be in-

definitely increased. Let V be the volume of the

cone, B its base, and H its height, and let V, B' be

the volume and the base of the inscribed pyramid,

whose height is also H; since every pyramid is mea-

sured by one-third of its base into its height, we have

V' = iB' H.

But if two variables are always equal, their limits are

equal. Hence
5»
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which proves the proposition as enunciated.

By the application of the above principle, that if

any two variables have an invariable ratio to each

other, then their limits will necessarily be in the same

ratio to each other, the student may easily demonstrate

other theorems in the elements of geometry. He may
easily prove, for example, that the convex surface of

the cone is equal to the circumference of its base into

half its slant height; that the volume of a cylinder

is equal to its base into its height, and that its convex

surface is equal to the ' circumference of its base into

its height; that the volume of a sphere is equal to its

surface into one-third of its radius, and that its sur-

face is equal to four great circles. In like manner, he

may easily find the measure for the volume and the con-

vex surface of the frustum of a cone, by considering

them as the limits of the volume and of the convex

surface of the inscribed frustum of a pyramid. Nay,

he may go back and by the use of the same method

easily find the area of any triangle and the volume of

any pyramid.

Nor is this all. For, after having demonstrated in

a clear and easy way the theorems in the elements of

geometry, the fundamental principle of limits, as above

conceived, carries its light into analytical geometry

and into the transcendental analysis. It is, indeed,

a stream of light which comes down from that ana-

lysis, properly understood, and irradiates the lower

branches of mathematical science, somewhat as the

sun illuminates the planets. If the student will only

familiarize his mind with that principle and its appli-
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cations, he will iind it one of the most fruitful and

comprehensive conceptions that ever emanated from

the brain of man. At the end of the next chapter

but one, we shall see some of its most beautiful appli-

cations to the quadrature of surfaces and to the cuba-

ture of volumes.



CHAPTER III.

THE METHOD OF INDIVISIBLES.

Kepler introduced the consideration of infinitely

great and infinitely small quantities into the science

of mathematics. Cutting loose from the cautious and

humble method of the ancients, which seemed to feel

its way along the shores of truth, this enterprising and

sublime genius boldly launched into the boundless

ocean of the infinite. His example was contagious.

Others entered on the same dark and perilous voyage

of discovery, and that, too, without chart or compass.

Cavalieri was the first to use such quantities systemati-

cally, or to lay down rules for the guidance of the

mind in dealing with them. The manner in which

lie employed them is known as " The Method of In-

divisibles," which, it is well known, opened a new

and successful career to geometry. He has invariably,

and with perfect justice, been regarded as the precur-

sor of those great men to whom we owe the infinitesi-

mal analysis.* The study of his method is, indeed, a

necessary prerequisite to a knowledge of the rise, the

nature, the difficulties, and. the fundamental principles

of that analysis.

In the method of indivisibles lines are considered

as composed of points, surfaces as composed of lines,

and volumes as composed of surfaces. " These hypo-

* Carnot on the Infinitesimal Analysis, chap. III., p. 141.

56
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theses," says Carnot, " are certainly absurd, and they

ought to be employed with circumspection." * Now
here the question very naturally arises, in every re-

flecting mind. If these hypotheses or postulates are

absurd, why employ them at all ? The only answer

that has ever been returned to this question is, that

such hypotheses should be employed because they lead

to true results. Thus, says Carnot, " It is necessary

to regard them as means of abbreviation, by means of

which we obtain promptly and easily, in many cases,

what could be discovered only by long and painful

processes according to the method of exhaustion."

This method is, then, recommended solely on the

ground of its results. We do not and cannot see the

justness of its iirst principles ; but still we must accept

them as true, because they lead to correct conclusions.

That is to say, we must invert the logical order of our

ideas and judge of our principles by the conclusions,

not of the conclusions by our principles. Nay, how-

ever absurd they may appear in the eye of reason, we
must, in the grand march of discovery, ask no ques-

tions, but just shut our eyes and swallow them down !

All honor to Cavalieri, and to every man that makes

discoveries ! But as there is a time for the making

of discoveries, so is there also a time for seeing how
discoveries are made.

We are told, for example, that a line is made up of

points, and, at the same time, that a point has abso-

lutely no length whatever. How many nothings, then,

does it take to make something? Who can tell us?

The demand is too much for the human mind. The
hypothesis is admitted to be absurd, and yet its harsh-

* Carnot on the Infinitesimal Analysis, chap. III., p. 141.

C*
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ness is sought to be softened by the assurance that it

should be regarded merely as an abbreviation. An
abbreviation of what ? If it is the abbreviation of

any true principle, then it is not absurd at all, since it

should evidently be understood to mean the principle

of which it is the abridged form or expression. But if .

it is not an abbreviation of any such principle, then

we do not see how our condition is bettered by the

use of a big word. This apology for the so-called first

principles of the method of infinites has, indeed, been

made and kept up from Carnot to Todhunter; but

we have not been informed, nor are we able to dis-

cover, of what these hypotheses are the abbreviations.

If they are abridgments at all, they may be, for aught

we can see, abridgments of conceptions as " certainly

absurd" as themselves.

After giving one or two beautiful applications of

the method of indivisibles, Carnot says: "Cavalieri

well asserted that his method is nothing but a corol-

lary from the method of exhaustion ; but he acknow-

ledged that he knew not how to give a rigorous de-

monstration of it." This is true. Cavalieri did not

know how to demonstrate his own method, because he

did not understand it. He understood it practically,

but not theoretically. That is to say, he knew how

to apply it so as to make discoveries. But how or

why his method happened to turn out true results he

did not know, and consequently he could not explain

to others. His disciples had to walk by faith and not

by science ; but if the road was dark, the goal was

beautiful. Some of his disciples even eclipsed the

master in the beauty and the value of their discoveries.

But, after all, their knowledge of the method was
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only practical, and consequently they -wisely abstained,

as a general thing, from attempts to elucidate the

principles and the working of its interior mechanism.
" The great geometers who followed this method,"

as Carnot well says, " soon seized its spirit ; it was in

great vogue with them until the discovery of the new
calculus, and they paid no more attention to the ob-

jections which were then raised against it than the

Bernouillis paid to those which were afterwards raised

against the infinitesimal analysis. It was to tliis

method of indivisibles that Pascal and Roberval owed

their profound researches concerning the cycloid."*

Thus, while appealing to the practical judgment of

mankind, they treated the demands of our rational

nature with disdain, and the more so, perhaps, because

these demands were not altogether silent in their own
breasts. A man may, indeed, be well satisfied with

his watch, because it truly points to the hour of the

day. But when, as a rational being, he seeks to know
how this admirable result is brought to pass, is it not

simply a grand imposition to turn him off with the

assurance that his -watch keeps the time? Does this

advance his knowledge? Does this enable him to

make or to improve watches? Nay, does this even

give him the idea of a watch, by showing him the in-

ternal mechanism and arrangement of the parts which

serve to indicate on its surface as it passes each flying

moment of time? No one, says Bishop Butler, can

have " the idea ofa watch " without such a knowledge of

its internal mechanism, or the adaptation of its several

parts to one another and to the end which it accom-

plishes. May we not, then, with equal truth, say that

» Chapter III., p. 144.
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no one has "the idea" of the method of indivisibles,

or of the infinitesimal calculus, unless he can tell by

what means and how it achieves its beautiful results?

"Without such knowledge the mathematician may, it

is true, be able to name his tools and to work with

them ; but does he understand them ? Does he com-

prehend the method he employs ?

Blaise Pascal himself, though universally recog-

nized as one of the greatest geniuses that ever lived,

could not comprehend the hypotheses or postulates of

the method of indivisibles as laid down by Cavalieri.

Hence, while he continued to use the language of

Cavalieri, he attached a different meaning to it—

a

change which is supposed by writers on the his-

tory of mathematics to have improved the rational

basis of the method. By " an indefinite number of

'

lines," said he, " he always meant an indefinite number

of small rectangles," of which " the sum is certainly

a plane." In like manner, by the term "surfaces,"

he meant " indefinitely small solids," the sum of which

would surely make a solid. Thus, he concludes, if

we understand in this sense the expressions " the sum

of the lines, the sum of the planes, etc., they have

nothing in them but what is perfectly conformed to

pure geometry." This is true. The sum of little

planes is certainly a plane, and the sum of little solids

is as clearly a solid. But, from this point of view, it

seems improper to call it " the method of indivisibles,"

since every plane, as well as every solid, may easily

be conceived to be divided. The improved postulates

of Pascal deliver us, indeed, from the chief diiiiculty

of the method of indivisibles, properly so called, only

to plunge us into another— into the very one, in fact,
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from whicli Cavalieri sought to effect an escape by the

invention of his method.

Let me explain. If we divide any curvilinear

figure into rectangles, no matter

how small, the sum of these rect-

angles will not be exactly equal

to the area of the figure. On the

contrary, this sum will differ from

that area by a surface equal to the

sum of all the little mixtilinear

figures at the ends of the rectangles. It is evident,

however, that the smaller the rectangles are made, or

the greater their number becomes, the less will be the

difference in question. But ho^v could Cavalieri

imagine that this difference would ever become abso-

lutely nothing so long as the inscribed rectangles con-

tinue to be surfaces ? Hence, in order to get rid of

this difference altogether, and to arrive at the exact

area of the proposed figure, he conceived the small

rectangles to increase in number until they dwindled

into veritable lines. The sum of these lines he sup-

posed would be equal to the area of the figure in ques-

tion ; and he was confirmed in this hypothesis, because

it was found to conduct to perfectly exact results.

Thus, his hypothesis was adopted by him, not because

it had appeared at first, or in itself considered, as intui-

tively certain, but because it appeared to be the only

means of escape from a false hypothesis, and because

it led to so many exactly true results. But when this

hypothesis, abstractly considered, was found to shock

the reason of mankind, which, in the words of Carnot,

pronounced it " certainly absurd," the advocates of the

method of indivisibles were obliged to assume new
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ground. Accordingly, they discovered that indivisi-

bles might be divided, and that by " the sum of right

lines" was only meant " the sum of indefinitely small

rectangles." Pascal seems to believe, in fact, that such

was the meaning of Cavalieri himself. It is certain

that history has decided otherwise, and delivered the

verdict that by indivisibles Cavalieri really meant

indivisibles.

Now, it seems just as evident that a curvilinear

figure is not composed of rectangles, as that it is not

comi)osed of right lines. Yet Pascal, the great dis-

ciple, adopted this supposition as the only apparent

means of escape from the absurdity imputed to that

of the master, and he pointed to the perfect accuracy

of his conclusions as a proof of the truth of his hypo-

thesis. For, strange to say, the sum of the rectangles,

as well as the sum of the lines, was found to be exactly

equal to the area of the curvilinear figure. What,

then, became of the little mixtilinear figures at the

extremities of the rectangles ? How, since they were

omitted or thrown out, could the remaining portion

of the surface or the sum of the rectangles alone be

equal to the whole? Pascal just cut the Gordian

knot of this difficulty by declaring that if two finite

quantities " differ from each other by an indefinitely

small quantity," then " the one may be taken for the

other -without making the slightest difference in the

result." Or, in other words, that an infinitely small

quantity may be added to or subtracted from a finite

quantity without making the least change in its mag-

nitude. It was on this principle " that he neglected

without scruple," as Carnot says, " these little quanti-

ties as compared with finite quantities ; for we sec that
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Pascal regarded as simple rectangles tlic trapeziums or

little portions of the area of the curve comprised be-

tween two consecutive co-ordinates, neglecting conse-

quently the little mixtilinear triangles which have for

their bases the differences of those ordinates." *

Carnot adds, as if he intended to justify this pro-

cedure, that " no person, however, has been tempted to

reproach Pascal with a want of severity." This seems

the more unaccountable, because Carnot himself has

repeatedly said that it is an error to throw out such

quantities as nothing. Nor is this all. No one can

look the principle fairly and fully in the face, that an

infinitely small quantity may be substracted from a

finite quantity without making even an infinitely small

difference in its value, and yet regard it as otherwise

than absurd. It is when such a principle is recom-

mended to the mathematician by the desperate exi-

gencies of a system which strains his reason, warps his

judgment, and clouds his imagination, that it is ad-

mitted to a resting-place in his mind. It was thus, as

we have seen, that Pascal was led to adopt the prin-

ciple in question ; and it was thus, as Ave shall see,

that Leibnitz was induced to assume the same absurd

principle as an unquestionable axiom in geometry.

Now if, with Cavalieri, we suppose a surface to be

composed of lines, or a line of points, then we shall

have to add points or no-magnitudes together until we

make magnitudes. Nay, if lines are composed of

points, surfaces of lines, and solids of surfaces, then is

it perfectly evident that solids are made uji of points,

and the very largest magnitude is composed of that

which has no magnitude ! Or, in other words, every

* Carnot, chapter III., p. 146.



64 THE FHILOSOPST OF MATHEMATICS.

magnitude is only the sum of nothings ! On the otlier

hand, if we agree with Pascal that a curvilinear space

is, strictly speaking, composed of rectangles alone,

then we shall have to conclude that one quantity may
be taken from another without diminishing its value

!

Which term of the alternative shall we adopt? On
which horn of the dilemma shall we choose to be im-

paled? Any one is at liberty to select that which is

the most agreeable to his reason or imagination. But

is it, indeed, absolutely necessary to be swamped amid

the zeros of Cavalieri or else to wear the yoke of Pas-

cal's axiom ? May we not, on the contrary, guided

by the careful insight of some new Spallanzani, safely

sail between this Scylla and Charybdis of the infinitesi-

mal method ? The reader will soon be enabled to

answer this question for himself.

Many persons have embraced the axiom in question

without seeming to know anything of the motives

which induced a Pascal and a Roberval to invent and

use it. Thus, for example, in a " Mathematical Dic-

tionary and Cyclopedia of Mathematical Sciences," it

is said, " When several quantities, either finite or in-

finitesimal, are connected together by the signs plus or

minus, all except those of the lowest order may be

neglected without aifecting the value of the expres-

sion. Thus, a+ dx + dx' = a." * Is it possible

a + dx + dx^ is exactly equal to a, and yet dx + dx''

are really quantities? But, then, they are so very

small that they may be added to a, without affecting

its value in the least possible degree !

There is, it is true, high authority in favor of this

* Dictionary of Mathematics, etc., by Davies and Peck." Art.

Infinitesimal.
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strange axiom. Kobcrval, Pascal, Leibnitz, the Mar-

quis de L'H6pital, and others, liave all lent tlie sanc-

tion of their great names to support this axiom and

give it currency in the mathematical world. But does

a real axiom ever need the support of authority ? On
the other hand, there is against this pretended axiom,

as intrinsically and evidently false, the high authority

of Berkeley, Maclaurin, Carnot, Euler, D'Alembert,

Lagrange, and Newton, whose names preclude the

mention of any other. But " where doctors disagree?"

Doctors never disagree about the axioms of geometry.

The very fact of a disagreement among them proves

that it is not about an axiom, but only about some-

thing else which is set up as an axiom. It is, indeed,

of the very essence of geometrical axioms that they are

necessary and universal truths, absolutely commanding

the assent of all, and shining, like stars, above all the

dust and darkness of human controversy. But waiv-

ing this, I shall in the next chapter explode this pre-

tended axiom, this principle of darkness assuming the

form of light, which has so long cast its shadow on

some of the fairest portions of demonstrative truth.

I shall conclude the present chapter with the exam-

ples which Carnot has given from Cavalieri and Pascal

to illustrate and recommend the method of indivisibles.

" Let A B," says he, • be the diameter of a semicircle,

A G B : let A B F D be the circumscribed rectangle

;

C G the radius perpendicular to D F; let the two

diagonals C D, C F also be drawn ; and finally through

any point m of the line A D, let the right line mii p g
be drawn perpendicular to C G, cutting the circum-

ference of the circle at the point v, and the diagonal

C D at the point p.
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" Conceive the whole figure to turn around C G, as

an axis; the quadrant of the circle A C G will gener-

ate the volume of a semi-sphere whose diameter is A
B ; the rectangle A D C G will generate the circum-

scribed right cylinder; the isosceles right-angled tri-

angle C G D will generate a right cone, having the

equal lines C G, D G for its height and for the radius

of its base; and finally the three right lines or segments

of a right line mg,nff, pg will each generate a circle,

of which the point g will be the centre.

"But the first of these circles is an element of the

cylinder, the second is an element of the semi-sphere,

and the third that of the cone.

" Moreover, since the areas of these circles are as the

squares of their radii, and these three radii can evi-

dently form the hypothenuse and the two sides of a

right-angled triangle, it is clear'that the first of these

circles is equal to the sum of the other two; that is to

say, that the element of the cylinder is equal to the sum

of the corresponding elements of the semi-sphere and

of the cone; and as it is the same with all the other ele-

ments, it follows that the total volume of the cylinder is

equal to the sum of the total volume of the semi-sphere

and of the total volume of the cone.
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"But we know that the volume of the cone is cue-

third that of the cylinder; then that of the semi-sphere

is two-thirds of it; then the volume of the entire sphere

is two-thirds of the volume of the circumscribed cylin-

der, as Archimedes discovered."

Again, says Carnot, " the ordinary algebra teaches

how to find the sum of a progression of terms taken

in the series of natural numbers, the sum of their

squares, that of their cubes, etc.; and this knowledge

furnishes to the geometry of indivisibles the means

of valuing the area of a great number of rectilinear

and curvilinear figures, and the volumes of a great

number of bodies.

Let there be a triangle, for example; let fall from

its vertex upon its base a perpendicular, and divide

this perpendicular into an infinity of equal parts, and

lead through each of the points of division a right

line parallel to the base, and which may be terminated

by the two sides of the triangle.

According to the principles of the geometry of in-

divisibles, we can consider the area of the triangle as

the sum of all the parallels which are regarded as its

elements ; but, by the property of the triangle, these

right lines are proportioned to their distances from the

vertex ; then the height being supposed divided into

equal parts, these parallels will increase in an arith-

metical progression, of which the first term is zero.

But in every progression by differences of which

the first term is zero, the sum of all the terms is equal

to the last, multiplied by half the number of terms.

But here the sum of the terms is represented by the

area of the triangle, the last term by the base, and the

number of terms by the height. Tlien the area of
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every triangle is equal to the product of its base by
the half of its height.

Let there be a pyramid; let fall a perpendicular

from the vertex to the base; let us divide this perpen-

dicular into an infinity of equal parts, and through

each point of division pass a plane parallel to the base

of this pyramid.

According to the principles of the geometry of indi-

visibles, the intersections of each of these planes by

the volume of the pyramid will be one of the elements

of this volume, and this latter will be only the sum

of all these elements.

But by the properties of the pyramid these elements

are to each other as the squares of their distances from

the vertex. Calling, theuj B the base of the pyramid,

H its height, b one of the elements of which we have

just spoken, h its distance from the vertex, and V the

volume of the pyramid, we will have

—

B:b::ff:h^;

therefore,

b = ?-h'.

Then V, which is the sum of all these elements, is

T>

equal to the constant — multiplied by the sum of the

squares of Jv'; and since the distances A increase in a

progression by differences of which the first term is

zero and the last H— that is, as the natural numbers

from o to H— the quantities A' will represent their

squares from o to H'.

Now common algebra teaches us that the sum of
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the squares of the natural numbers from o to H, in-

clusively, is

But here the number H being infinite all the terms

which follow the first in the numerator disappear in

comparison with this first term, then this sum of the

squares is reduced to J H^.

Multiplying, then, this value by the constant —

•

found above, we will have for the volume sought

—

V= iBH;

that is, the volume of the pyramid is the third of the

product of its base by its height."

Now here we see, in all their naked harshness, the

assumption of Cavalieri on the one hand and that of

Pascal on the other. An area is supposed to be made

up of lines, of that which, compared with the unit of

superficial measure, has absolutely no area at all

!

This hypothesis is, as we have seen, pronounced " cer-

tainly absurd" by Carnot, and yet it leads by some

unknown process to true results. How this happened,

or could have happened, Carnot is at no pains to ex-

plain. This seems the more extraordinary because

the clue to the secret was more than once in his hands,

and only required to be seized with a firm grasp and

followed out to its consequences, in order to solve

the enigma of " the method of indivisibles." He is,

in fact, the apologist rather than the expounder of that

method.

No one was more sensible than Cavalieri himself
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of the grave objections to his own method. Accord-

ingly he strove, as he tells us, " to avoid the suppos-

ing ofmagnitude to consist of indivisible parts," because

there remained, some difficulties in the matter which

he was not able to resolve.* Instead of pretending

that he could explain, or even see through, these ob-

jections, he exclaimed :
" Here are difficulties which

the arms of Achilles could not conquer." He speaks,

indeed, as if he foresaw that his method would be, al

some future day, delivered in an unexceptionable form,

so as to satisfy the most scrupulous geometrician. But

free from the miserable sham of pretending to under-

stand it himself, he simply leaves, with a beautiful

candor worthy of his genius, this Gordian knot, as he

calls it, to some future Alexander. If that Alexander

appeared in the person of Carnot, it must be admitted

that, like the original, he was content to cut rather

than to untie the Gordian knot of the method of

indivisibles.f

Again, we are gravely told that infinity, plus 3

times infinity square, may be neglected, or thrown out

as nothing, by the side of infinity cube. Noav such

propositions (I speak from experimental knowledge)

tend to disgust some of the best students of science

with the teachings of the calculus, and to inspire nearly

all with the conviction that it is merely a method of

approximation. How could it be otherwise? How

can reflecting minds, or such as have been trained and

encouraged to tJiink, be told, as we are habitually told

in the study of the differential calculus, that certain

* Cavalieri, Geom. Indivis., lib. 7.

t I speak in this way, because in my laborious search after light

respecting the enigma of the method of Cavalieri, I applied to Car-

not in vain.
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quantities are thrown out or neglected on one side of

a perfect equation, without feeling that its perfection

has been impaired, and that the result will, therefore,

be only an approximation to the truth ? This is the

conclusion of nearly all students of the calculus, until

they are better informed by their instructors. Every

teacher of the calculus is often called upon to encounter

this difficulty; but, unfortunately, few are prepared

to solve it either to their own satisfaction or to that

of their pupils.

Thus, for example, in one of the latest and best

treatises on the " Differential Calculus" which has

been issued from the University of Cambridge, we
find these words : "A difficulty of a more serious kind,

which is connected with the notion of a limit, appears

to embarrass many students of this subject— namely, a

suspicion that the methods employed are only approxi-

mative, and therefore a doubt as to whether the results

are absolutely true. This objection is certainly very

natural, but at the same time by no means easy to

meet, on account of the inability of the reader to point

out any definite place at which his uncertainty com-

mences. In such a case all he can do is to fix his

attention very carefully on some part of the subject,

as the theory of expansions for example, where specific

important formulae are obtained. He must examine

the demonstrations, and if he can find no flaw in

tlicm, he must allow that results absolutely true and

freefrom all approximation can be legitimately derived

by the doctrine of limits." *

Alas! that such teaching should, in the year of

* Todhunter's Differential Calculus, etc. Cambridge: MacniiUau

& Co. 1855.
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grace 1866, issue from the most learned mathematical

University in the world, and that, too, nearly two

centuries after its greatest intellect, Newton, had

created the calculus ! What ! the reader, the student

not able to point out the place at which his difficulty

begins ! Does not every student know perfectly well,

in fact, that when he sees small quantities neglected,

or thrown out on one side of an equation, and nothing

done with them on the other, he then and there begins

to suspect that the calculus is merely an approxima-

tive method? In view of the rejection of such quan-

tities his " objection is," as the author says, " certainly

very natural." Nay, his "suspicion" is not only

natural; it is necessary and inevitable. But if any

student should be unable to tell where his " difficulty,"

his " suspicion," his " uncertainty" commences, why
should not this be pointed out to him by his teacher ?

Surely, after the labors of a Berkeley, a Carnot, a

D'Alembert, and of a hundred more, the teacher of

mathematics in the most learned University in the

world should be at no loss either to explain the origin

of such a difficulty, or to give a rational solution of it.

Is the philosophy, the theory, the rationale of the in-

finitesimal calculus not at all studied at Cambridge?

The truth is, that the teacher in question, like many
others, found it " by no means easy to meet" the diffi-

culty which haunts the mind of every student of the

calculus, just because he himself had studied the won-

derful creation of Newton merely as a practical art to

be used, and not as a glorious science to be under-

stood.



CHAPTER IV.

SOLUTION OF THE MYSTERY OF CAVALIEEl's METHOD,

AND THE TEUE METHOD SUBSTITUTED IN ITS PLACE.

In the preceding chapter, the difficulty, the enigma,

the mystery of Cavalieri's method was fully exhibited.

It is my object, in this chapter, to clear up the mys-

tery of that method, and to set the truth in a trans-

parent and convincing point of view. Or to untie,

as he calls it, " the Gordian knot" of his method, and

to replace it by a perfectly clear train of reasoning,

which shows the necessary connection between unde-

nied and undeniable principles, and the conclusion at

which he arrived, as well as conclusions lying beyond

the reach of his obscure and imperfectly developed

system.

I shall begin with the first of the examples or illus-

trations produced from the work of Carnot. By con-

sulting the last chapter the reader will perceive that

Cavalieri finds the area of any triangle by obtaining,

as he supposes, the sum of its elements or of all right

lines parallel with its base, and included between its

two sides. Now, although this hypothesis is "cer-

tainly absurd," yet is there at the bottom of it a pro-

found truth which was most obscurely seen, and there-

fore most inadequately expressed, by the great Italian.

Nor from that day to this has the truth in question

been any better seen or more adequately expressed—

a

7 D 73



74 THE PHILOSOFHT OF MATHEMATICS.

fact which will in due time be demonstrated in the

following pages. As often as the mathematician has

by his reasoning been brought face to face with this

great truth he has failed to see itj^ because he has mis-

conceived and misinterpreted his symbols. But we

are not, as yet, quite prepared to set this singular and

instructive fact in a perfectly satisfactory and convin-

cing light.

Let us, then, return to the case of the triangle, which

is represented by the figure ABC.
Let its altitude A D be divided

into any number of equal parts,

as seen in the figure, and through

each point of division let a right

line be drawn parallel to its base

and terminating in its two sides.

Let there be, as in the figure, a

system of rectangles constructed,

each having in succession one of the parallel lines for

its base. Now the question is, what course should

the geometer pursue in order to obtain by a clear and

unexceptionable logical process the area of the triangle

ABC?
Cavalieri, as we have already seen, would not proceed

on the assumption that the sum of the rectangles, how

great soever their number, is equal to the area of the

triangle, because he believed that it -would always be

greater than that area. Hence, in order to arrive at

the exact area, he conceived the triangle to be com-

posed, not of rectangles however small, but of right

lines. Pascal, on the other hand, acknowledging the

absurdity of such an hypothesis, supposed the triangle

to be composed of the rectangles when their number
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was indefinitely increased. Thus, by a slight diverg-

ence between the courses of the two great geometers,

the one was landed in Scylla and the other in Cha-

rybdis.

The method of Pascal is founded in eri-or. Its

basis, its fundamental conception, is demonstrably

false. It is evident that the sum of the rectangles

can never be exactly equal to the area of the triangle

unless the broken line Klm.no'pqr stuvQ can be

made to coincide with the line A C. But this can

never be, since, however great the number of rect-

angles may be conceived to be, still the sum of all the

little lines, such as A ?, mn, o p, and so forth, parallel

to the base of the triangle will always continue equal

to D C, and the sum of all the little lines, such as n o,

pq, rs, and so forth, parallel to the altitude A D of

the triangle, will always continue equal to A D. Hence

the broken line AlmnopqrstuvC will always re-

main equal to D C + A D ; and if it should ever coin-

cide with A C, then one side of the triangle ADC
would be equal to the sum of the other two, or the

hypothenuse of a right-angled triangle would be equal

to the sum of its two sides, which is impossible. In-

deed, the broken line in question is a constant quantity;

the number of parallels may be increased ad libitum, and

yet the length of the broken line will remain invariably

the same. Hence the diiference between this constant

length and the length of A C is itself a constant quan-

tity, and the length of the one line never even approxi-

mates to that of the other, much less can the one ever

coincide with the other. A C is not even the limit of

the broken line Almn, etc., since the value of the

latter does not tend toward that of the former as the
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number of its parts is increased. But the area of the

triangle A D C is the limit of the area of the figure

CD Klmnopr stuvC, since the last area continu-

ally tends toward an equality with the first area, with-

out ever becoming absolutely equal to it. The same

things are, it is obvious, equally true in regard to the

right line A B, and the broken line on the other side

of the triangle ABC.
We should, then, discard the fundamental concep-

tion of Pascal and Roberval as false; which we may
do at the present day without falling into the hypo-

thesis of Cavalieri or any of its manifold obscurities.

If, instead of seeking the sum of the rectangles, whose

number is supposed to be indefinitely increased, we

seek the limit of that sum,, we shall find the exact area

of the triangle by a logical process as clear in itself as

it is true in its conclusion.

For this purpose let B represent the base of the

triangle A B C, 6 the base 6 c of any triangle, A 6 c

formed by one of the lines parallel to B C, H and h

the respective heights of these two triangles, and h

one of the equal parts into which the line AD has

been divided. Then, by similar triangles, we have

b : B::7t:H,

7.
B

7or = — .A,
H '

bk=\i — .h,
H '

in which b h is the area of the little rectangle, whose base

is b and altitude k. Now, the limit of the sum of all

such rectangles being the exact area of the triangle
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A B C, we have only to find the limit of that sum in

order to obtain an expression for the area sought.

That is to say, we have only to find the limit of the sum
T>

of A —: . /t for all the values of li. But the value of hH
varies from A to A D or from zero to H, and since

the heights of the little rectangles are all equal to each

other, we shall have for the successive values of h,

k, 2h, 3i . . .nh,

in w^hich n denotes the whole number of rectangles,

or of equal parts into which A D is divided. Let it

be observed that

mJfc = AD = H.

Then the sum of

k~h= h- {h + 2k + ^h . . . + nh),
H H

or Z;^A=P^(l+2 + 3... + 4H H.

But since the sum of the seriesT. + 2 + 3 . . . + « is,

according to a well-known algebraic formula, equal to

n{n + 1) 1

2 '
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Now, if S be the sum of the rectangles, we shall have

However small h may be made, or however great, in

other words, the number of rectangles may be con-

ceived to be, the two variables S and its value will be

equal to each other. Hence, as has been demonstrated,

their limits are equal. But the limit of S is the area

B H' + H it

of the triangle ABC, and the limit of— XH 2

is — X — , or . That is, the area of the triangle
H 2' 2

^

A B C is one-half the product of its base by its alti-

tude.

Now, it may be clearly shown how it was that Pas-

cal, as well as Roberval and others, started from a

false hypothesis or first principle, and yet arrived at a

perfectly correct conclusion. He committed an error

first in supposing that the sum of the rectangles would

ultimately be equal to the area of the triangle; he

committed another error, in the second place, in sup-

posing that he could reject indefinitely small quanti-

ties without making any difference in the result; and

these two errors, being opposite and equal, just exactly

neutralized each other. Thus, the quantities which

he rejected did make a most important difference in

the result, for they made it exactly true instead of

false. It is, in the natural world, experimentally

proved that two rays of light may cross each other so

as to produce darkness. But this is nothing to the

wonder of the infinitesimal method as used by Rober-
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val and Pascal. For here two rays of darkness are

made to produce light.

\j
Thus, in the logic of Pascal, there was an unsus-

pected compensation of unsuspected errors. This

might, indeed, have been conjectured from the nature

of his procedure. For, if we look at the figure, we
shall perceive that the sum of the rectangles is made

up of the triangle ABC, which is always constant,

and of all the little variable triangles which serve to

complete that sum. In like manner, if we examine

the expression for the sum of the rectangles, we shall

find that it is composed of a constant term and of a

variable term. For that expression is, as we have

B^ff + H BH^B . ,. ,

seen, — X , or 1— , an expression which,
H 2 2 2

B H
literally understood, has no meaning. For is a

A
p

surface, and — is a line, and it is impossible to add a
Jt

line to a surface. Hence, according to the well-known

principle of homogeneity, we must in all such cases

restore the understood unit of measure, which is, in

the present case, the variable quantity k. The above

expression then becomes \- — . The constant

p TT

term is the measure ofthe constant triangle ABC.

B h
Is not the variable term, then,— , the expression for

the sum of all tlie little variable triangles ? That is

to say, have not all these little triangles been added

to the area ABC, and then thrown away as if they

were nothing in their last stage of littleness ? Such a
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suspicion, it seems to me, ought to |pave arisen in the

mind of any one who had looked closely and narrowly

into the mysteries of this method.

But this charge of a compensation of errors is some-

thing more than a shrewd suspicion or conjecture. It

is a demonstrative certainty. The opposite errors may
be easily seen, and computed, so as to show that they

exactly neutralize each other. Thus, when it is asserted

that the triangle A B C is equal to the sum of all the

rectangles set forth in the figure, it is clear that the

measure is too great, and exceeds the area ofA B C by

the sum of all the aforesaid little triangles. But the

B k
rejected term is exactly equal to that excess, or to

Ji

the sum of all the little triangles. For the triangle

., AlXk mnXJe o pXkA i m = , m 71 o = , o p Q = —^ ,

2 2 2

qrXk , stXk , ^ uvXk
q r s = , stu= , and uv\j= .^

2 ' 2 ' 2

Hence their sum is equal to

{Al-\-mn-\- op-\- qr-\- st-{- uv)k DCXi
2 2

In like manner it may be shown that the sum of the

triangles on the other side of the triangle A B C is

B D X Ji;

equal , Hence the sum of all the triangles

on both sides of A B C is equal to — '— =
B/«-—

-. But this is precisely the quantity which has
A

been thrown away, as so very small as to make abso-

lutely no difference in the result ! It is first added
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1

by a false hypothesis, and then rejected by virtue of a

false axiom, and the exact truth is reached, both to

the astonishment of the logician— not to say magician

—and of all the world beside.

If we may, openly and above-board, indulge in such

a compensation of errors, then we need not go down
into the darkness of the infinite at all. For the above

reasoning— if reasoning it may be called— is just as

applicable to a finite as it is to an infinite number of

terms. Let us suppose, for example, that the number

of rectangles constructed, as above, are finite and

fixed instead of variable and indefinite. Let this

finite fixed number be denoted by n and the sum of

the rectangles by S.

Then S = ?i? + ^.
2 2

Now, if we may be permitted to assert, in the first

place, that this sum is equal to the area of the triangle,

B h
and, in the second, throw away— as unworthy of

T) TT

notice, then we shall obtain , or one-half the pro-

duct of the base by the height as an expression for the

area of the triangle. The result is exactly correct.

But, then, in asserting that the sum of the rectangles,

say of ten for example, is equal to the triangle, Ave

make its area too great by the sum of twenty very

respectable triangles. We correct this error, however,

by throwing away — , or rather —'——
, which is

2 2

exactly equal to the sum of these twenty triangles.



82 THE PHILosornY of mathema tics.

Precisely such, in nature and in kind, is the reason-

ing of the more approved form of the method of indi-

visibles. It is, indeed, only under the darkness of

the infinite that such assertions may be made and such

illicit processes carried on without being detected, and

they expire under the scrutiny of a microscopic in-

spection.

How different the method of limits ! If properly

undei-stood, this proceeds on no false assertion and

perpetrates no illicit process. No magnified view can

be given to this method which will show its propor-

tions to be otherwise than just or its reasonings to be

otherwise than perfect. Having found the above

expression for the sum of its auxiliary rectangles,
T> TT2

I XT
which is S = — X , this method does notH 2

throw away H in the numerator of the last term, be-

cause H, though infinite, may therefore be treated as

nothing by the side of H^ On the contrary, it simply

makes that term homogeneous by restoring the sup-

pressed or understood unit of measure h, so that it

becomes

„ BH
,
TLh

b ^ f-
:

2 2

and then proceeds on the demonstrated truth that if

two variables are always equal, their limits must also

be equal. But the area of the triangle is the limit of
T> TI

S (the sum of the rectangles), and is the limit of

the second member of the above equation. Hence, if

"p XT
A be the area of the triangle, we have A ^ .
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in like manner, irom the expression

fonnd by Carnot in the last chapter, the method of

limits does not reject infinity, plus 3 times infinity

square, as nothing by the side of twice infinity cube,

in order to reach the conclusion that the whole ex-

pression is exactly equal to the needed result J^H'.

In the sublime philosophy of Pascal, " the number H
being infinite, all the terms •which folloAv + 2 H" in the

numerator disappear by the side of that first term
;

then that sum of the squares reduces itself to J H'."

But the method of limits, more humble and cautious

in its spirit, takes its departure from the demonstrated

proposition that if two variable quantities are always

equal, then their limits must be equal, and arrives at

1 .1 ,x -n 2H«+3H'+H
precisely the same result, ior ,

- „,, , . 2W .2.WJC .B.K' ,,
when fully expressed, is 1 1 , and by

6 6 6

making k ^= o, we find its limit J H^.

From the above example it will be seen that Pascal,

instead of taking the sum of his auxiliary rectangles

and the sum of his auxiliary prisms, as he supposed

he did, in finding the area of a triangle and the

volume of a pyramid, really took the limits of those

sums, and that, too, without even having had the idea

of a limit, or comprehending the nature of the process

he performed. Nor is this all. For he arrived at

this result only by a one-sided and JDartial application

of his own principle. In order to explain, let us re-

sume the above expression for the sum of the auxiliary

B H'' + H
rectangles, which is -- X . Now if H be

H 2
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infinite, and may be omitted as nothing compared

with H", reducing the last factor to —, it should be

remembered that, according to the same supposition,

the first factor becomes —= o. Hence the expression

for the sum of the rectangles is reduced to o X co , or

an infinite number of zeros. Precisely the symbol of

the great truth which lies at the bottom of Cavalieri's

hypothesis, and which, as we shall hereafter see, still

remains to be correctly interpreted by the mathemati-

cal world. In like manner the sum of the auxiliary

prisms used in finding the volume of the pyramid, or

b =— X , IS reduced by the same
H^ 6

^

suppositions to S = — X —= o X <» , a symbol which

never could have been understood or correctly inter-

preted without a knowledge of the method of limits.

But ever since that knowledge has been possessed and

more clearly developed, the meaning of the symbol

o X 00 has been, as it were, looking the mathematician

in the face and waiting to be discovered. No attempt

can, however, be made to construe it, until the methods

of Leibnitz and Newton be passed under review.

Before leaving this branch of the subject, it may be

well to show how, by the method of limits, the volume

of the pyramid is determined. Let V, then, be the

volume of any pyramid, B its base, and H the perpen-

dicular from its vertex on the plane of its base. Let H
be divided into any number of equal parts, each repre-

sented by k, and j^lanes passed through the several

points of division parallel to the base. On the base
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of the pyramid, and on every similar section of the

pyramid cut out by the parallel planes, conceive right

prisms to be constructed, each equal in height to h,

the distance between any two adjacent parallel planes.

Let S represent the sum of these prisms, b the base of

any one of them except the lowest, and /t Its distance

from the vertex of the pyramid.

Then, by a well-known property of the pyramid,

we shall have
6 : B : : A= : H^

or 6 =— . A',

and b .k=— . A',

for the volume of the prism whose base Is b. Now
S, the sum of all the prisms," Is evidently equal to

Bit— multiplied into the several values of h^. But, If

71 be the whole number of prisms, then the several

values of h will be

k,2k,3h,4k... + nk. nk = K.

Hence, S =— (F + 2^^ + 3=)!;= + 4=F . . . w^P),

or S=— (1 + 2^ + 3^ + 4^ . . + «=).

H^

But, according to a well-known algebraic formula,

(l + 2^ + y + 4^.. + >^0 = "^'^+/^f"+^l
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„ ^ B nh{nh + li)(2nh + h)
Hence, o =— . ^^ -^

,
'

H^ 1.2.3

or O = . ^^ -r^—W 1.2.3

_ B^ 2W-^ZWh+Iik^ ^

~W 1.2.3

Now, if we conceive h to become smaller and smaller,

or the number of prisms to become greater and greater,

their sum will continually tend more and more to an

equality with the volume of the pyramid, without ever

becoming exactly equal to that volume. Hence V is

tlie limit of S. In like manner, as h becomes smaller

and smaller, the expression

B /2IP + 3IP

W^\ ' 1.2.

k + B ¥
3

''

or l-xaH' + iffi + iHP),H

tends continually more and more toward an equality

with — X J H', without ever reaching that value,

while k remains a real quantity, or the prisms have

the least possible thickness. Hence —^ X J H^ is the

limit of the variable in question.

But as these two variables are always equal, then

are their limits also equal. That is to say,

* Here, as the unit of measure k is not dropped or suppressed ; the

expression is homogeneous, as it should always be understood to bo

even when not expressed.
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limit of S = limit of —̂ X {i H' + J H' /c + i H k%

or V = |-^XJff= iBH;

the well-known measure for the volume of a py-

ramid.

In the above example I have used a good many
words, because the beginner, for whom it is written,

is not supposed to be familiar with the method of

limits. But the process is in itself so direct, simple,

and luminous, that a little familiarity with the method

of limits will enable the student to repeat it or any

similar process almost at a glance. He will only

have to conceive the pyramid with its system of aux-

iliary prisms, form the expression for their sum, pass

to its limits, and the problem is solved, or the volume

of the pyramid found. And he may do this, too,

with little or no aid from the use of diagrams or sym-

bols. He may, in fact, bring his mind into direct

contact with geometrical phenomena, and reason out

his results in full view of the nature of things, or of

their relations, rather than in the blind handling of

mere formulEe, and thus beget a habit of meditation

and of close discriminating attention, which are among
the very best effects of any system of mental edu-

cation.

AEEA OF THE PARABOLIC SEGMENT.

This question will offer us examples of very various

procedures which may be employed in the search of

quadratures, and will give an idea of the variety of

resources which the infinitesimal method presents.
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First Solution — Eeferring the parabola to the diame-

ter A B and to the tangent AY parallel to the base

of the segment ADC, the squares of the ordinates

are proportional to the abscissas, and the equation of

the curve is

y' = 2p X.

Let us cut the surface by parallels to A Y; the area

ADC may be considered as the limit of the sum of

interior parallelograms, which will be divided into two

equal parts by the diameter A B, so that the two areas

ABC, A B D, being limits of equal sums, are equiva-

lent. It suffices, then, to calculate the half ABC.
We shall know the area A B C if we know its ratio

to the complement A E C of this area in the parallelo-

gram A B C E, and to find this we will compare two

corresponding parallelograms P M H P', Q M K Q'

of the sums which have these two areas for their limits.
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Designating by x, y the co-ordinates of any point M,
iand by h and k the increments tliat they acquire in

passing from M to M', we will have

F M H P^ ^ y A

Q M K Q' ~ a; /!;'

and we have, from the equation of the curve,

f = 2px; {y + ky = 2p{x + J,);

hence 2y Jc-\- k^ = 2p h.

Hence,

h ^ 2y+k
_ y Ji^y 2y_±_k ^ 2f + ky

^
; or -^ X - = ^ X

k 2p X k ip Zpx

yh _^ ky
or !U1=2

.

xk 2px

This ratio then tends toward the limit 2, when k

tends toward zero ; the two areas A C B, A E C are

then the limits of sums of such infinitely small

quantities that the ratio of any two corresponding

ones tends toward the same limit 2 ; then, according

to the principle already demonstrated, the ratio of

the areas A C B, A E C is exactly 2. Thus, the

area of A C B is two-thirds of the parallelogram

A E C B, and the proposed area A C D is four-thirds

of this same parallelogram, or two-thirds of the whole

circumscribed parallelogram.

Second Solution.—It is easy to calculate directly

the area A E C, which is the limit of the sura of the

parallelograms Q M K Q' or Q H M' Q', of which

the general expression is x k sin A, A designating the
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angle Y A X, it designating the increment oiy. It is

necessary to express x in terms of y, which will give

for the expression of any one of the parallelograms

2 7 * A
y-—^i^^:— . Now, if we suppose in this case that the

2p
altitudes of the parallelograms are all equal, which

was useless in the preceding solution, the successive

values of y will be

h,2h, Sk . . .nJo,

and we shall have

nk = A'E, or {n+l)k = AE,

according as we take the parallelograms Q, M' or Q K,

which is indifferent.

It is required, then, to find the limit of the sum

^'^'°^
(1 + 2^ + 3^ + , . , + n'),

2p

when n increases indefinitely, and k decreases at the

same time, so that we always have w jfc ^ A E.

Now, Archimedes has given for the summation of

the squares of the natural numbers a formula which,

written with the signs used by the modems, gives

1 + 2^ + 3. + .
..,,._'!>±iK^iL±l).

.

It is necessary, then, to find the limit of the follow-

ing expression—
P sin A w(n+l)(2?i+l)

2p 1.2.3
'

A E (A E + ife) (2 A E + J!;) sin A
2 . 2 . 3p

'
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when k tends towards zero. That limit is evidently

ATE? . sin a a B . a E sin a
2.3p ' 3

observing; that = A B.
2p

The area A E C is, then, the third of the parallelo-

gram A B C E, and the area A B C is two-thirds of it,

as we found by the first Solution.

Third Solution.—This solution will have the advan-

tage of giving an example of a mode of decomposition

very dififerent from the preceding ones. We shall in

this consider an area as the limit of a sum of areas,

indefinitely small, determined by tangents to the same

curve.

Let A C C be the parabolic segment, A B the

diameter, C D the tangent at C ; from which results

A D = A B ; let us compare the two areas A C B,

DAC.
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We may consider A C B as the limit of a sum of in-

scribed trapeziums P M M' P', wliose sides P P' lying

upon A B tend all in any way whatever towards zero.

As to the area D A C, we will draw at M and M'

the two tangents M T, M' T', from which will result

A T = A P, A T' = A P', T T' = P P'. If, through

the point of meeting E, of these tangents, we draw a

parallel to A B, we shall have the diameter of the

chords M M', which will pass in consequence through

the middle of M M', so that the area of the triangle

T E T' will be half of that of the trapezium P P'M M'.

Now it is easy to see that the area of D A C is the

limit of the sura of the triangles T' T E,. In fact, this

area is exactly the sum of the areas comprised be-

tween each of the arcs M M', the tangent M' T', the

base of T' T and the tangent T M terminating in M.
But each of these areas differs from the corresponding

triangle T' T E by a quantity infinitely small in com-

parison with it, when P P' tends towards zero ; for this

difference is less than the rectilinear triangle MEM'
whose ratio to the triangle T' E T is that of the rect-

angles of the sides which include their angles at E,

which are supplementary ; a ratio which is evidently

infinitely small. Then the area D A C is Dhe limit of

the sum of the triangles T' E T.

This being established, the two areas A C B, D A C
being limits of sums of infinitely small quantities

which are in the ratio of 2:1, will be themselves iu

this ratio. Then A C B is two-thirds of the triangle

D B C, or of the parallelogram constructed upon A B
and B C, which leads us back to tlie result obtained

before.



CHAPTER V.

THE METHOD OF DESCARTES, OE ANALYTICAL

GEOMETRY.

Descartes is the great connecting link between

the ancient and the modern geometry. For two thou-

sand years, or a little less, the science of geometry had

remained nearly stationary when this extraordinary

man appeared to give it a new and prodigious im-

pulse. During that long and dreary period not one

original mind dared to assert its own existence. " It

is not surprising," says the Marquis de L'H6pital,

" that the ancients did not go farther ; but we know
not how to be sufficiently astonished that the great

men—without doubt as great men as the ancients

—

should so long have stopped there, and that, by an

admiration almost superstitious for their works, they

should have been content to read them and to com-

ment upon them without allowing themselves any

other use of their lights than such as was necessary

to follow them, without daring to commit the crime

of sometimes thinking for themselves, and of carrying

their mind beyond what the ancients had discovered.

In this manner many worked, wrote, and books mul-

tiplied, but yet nothing advanced ; all the productions

of many centuries only sufficed to fill the world with

respectable commentaries and repeated translations of

originals often sufficiently contemptible." Thus, there

93



94 TSE FHILOSOFHY OF MATHEMATICS.

was, in tlie mathematical world, no little activity ; but

it moved on hinges, not on wheels. It repeated, for

the most part, the same everlasting gyrations, but

made no progress.

" Such was the state of mathematics," continues the

Marquis, " and above all philosophy, up to the time

of M. Deseai'tes. That great man, impelled by his

genius, and by the superiority which he felt in him-

self, quitted the ancients to follow the same reason

which the ancients had followed ; and that happy

boldness in him, though treated as a revolt, was

crowned with an infinity of new and useful views con-

cerning Physics and Geometry."

The Marquis knew, of course, that there were some

exceptions to the above general statement. The time

was sufficiently gloomy, it must be conceded, both

with respect to mathematics and philosophy; but it

was, nevertheless, relieved by tlie auspicious dawn

that ushered in the brilliant era of Descartes. Alge-

bra had been created, and Vieta, himself a man of

great original genius, had effected that happy alliance

between algebra and geometry which has been the

prolific source of so many important results. But

this detracts nothing from the glory of Descartes. For

it is still true of him, as de L'Hopital says, that " he

commenced where the ancients had finished, and began

by a solution of the problem at which Pappus said

they had all been arrested. Nor is this all. It is

merely the first step in his great career. He not only

solved the problem which had, according to Pappus,

proved too much for all the ancients, but he also in-

vented a method which constitutes the foundation of

the modern analysis, and which renders the most diifi-
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cult questions considered by tlie ancients quite too

easy and simple to tax even the powers of the merest

tyro of the present day. The method which he dis-

covered for tangents, the one great and all-compre-

hending question of the modern analysis, appeared to

him so beautiful that he did not hesitate to say, " That

tliat problem, was the most useful and the most general

not only that he knew, but even thai, he ever desired to

know in geometry." *

But although Descartes, like every true king of

thinkers, extended the boundaries of science, he could

not set limits to them. Hence, it was only a little

while after the publication of his method for tangents,

that Fermat invented one which Descartes himself ad-

mitted to be more simple and felicitous than his own.f
It was the invention or discovery of his method of

tangents which led Lagrange, in opposition to the

common opinion, to regard Fermat as the first author

of the differential calculus. But the method of Barrow

was more direct and simple, if not more accurate, than

that of Fermat. He assumed that a curve is made up

of an infinite number of infinitely small right lines,

or, in other words, to be a polygon, the prolongation

of whose infinitely small side is the tangent to the

curve at the point of contact. On this supposition the

" differential triangle" formed by the infinitely small

side of the polygon, the difference between the two

ordinates to the extremities of that side, and the differ-

ence between the two corresponding abcissas, is evi-

dently similar to the triangle formed by the tangent,

the ordinate, and the subtangent to the point of con-

tact. Hence the subtangent is found simply by means

» Geometrie, Liv. 2. t Lettre 71, Tom. 3.



96 THE PHILOSOFHY OF MATHEMA TICS.

of these two similar triangles, a method which dis-

penses with the calculations demanded by the method

of Fermat, as well as by that of Descartes.

Barrow did not stop, however, at his " differential

triangle;" he invented a species of calculus for his

method. But it was necessary for him, as well as for

Descartes, to cause fractions and all radical signs to

disappear in order to apply or use his calculus. This

was, says the Marquis, de L'H8pital, " the defect of

that calculus which has brought in that of the celebrated

M. Leibnitz, and that learned geometer has commenced

where M. Barrow and the others had terminated. His

calculus has led into regions hitherto unknown, and

made those discoveries which are the astonishment of

the most skillful mathematicians of Europe. The

Messrs. Bernouilli (and the Marquis might have added

himself) were the first to perceive the beauty of that

calculus ; they have carried it to a point which has

put it in a condition to surmount difficulties which no

one had ever previously dared to attempt.

" The extent of that calculus is immense ; it applies

to mechanical curves as well as to geometrical ; radical

signs are indifferent to it, and even frequently con-

venient; it extends to as many indeterminates as one

pleases ; the comparison of infinitely small quantities

of all kinds is equally easy. And hence arises an in-

finity of surprising discoveries with respect to tangents,

whether curvilinear or rectilinear ones, to questions

of maxima and minima, to points of inflexion and of

rebrousement of curves, to develop^es, to caustics by

reflexion and by refraction," etc.*

Thus, by his method of tangents, Descartes opened

* Preface to Analyse des Infinites Petites.
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the direct route to the differential calculus. Nor is

this all. For, by the creation of his co-ordinate

geometry, he enabled Fermat, Barrow, Newton, and

Leibnitz to travel that route with success. A more

happy or a more fruitful conception had never, up to

that time, emanated from the mind of man, than Des-

cartes' application of indeterminate analysis to the

method of co-ordinate geometry—a method which was

due exclusively to his own genius.

We shall, then, proceed to give, as far as possible,

an accurate and complete idea of Aanalytical Geome-

try— the wonderful method created by Descartes.

This branch of mathematics has one thing in common
with the application of algebra to geometry—namely,

the use of algebraic symbols and processes in the treat-

ing of geometrical questions. Hence, if we would

obtain clear views respecting its first principles or its

philosophy, we must, in the first place, form a just

idea of the precise relation which these symbols sus-

tain to geometrical magnitudes. We proceed, then,

to illustrate and define this relation.

THE KELATION OF ALGEBRAIC SYMBOLS TO GEOMETRI-

CAL MAGNITUDES.

On this subject geometers have advanced at least

three distinct opinions. The first is, that in order to

represent the length of a line (to begin with the most

simple case) by a letter, we must apply to it some

assumed unit of lineal measure, as a foot or a yard,

and see the number of times it contains this unit.

Then this number may, as in ordinary algebra, be re-

presented by a letter. According to this view, the

number represents the line and the letter the number.

9 E
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Such process of comparison, it is supposed, must either

be executed or conceived in order to establish the

possibility of expressing geometrical magnitudes by

the characters of algebra.

The" second opinion is, that "geometrical magni-

tudes may be represented algebraically in two ways

:

first, the magnitudes may be directly represented by

letters, as the line A B, given

A « -o absolutely, may be represented

by the symbol a; secondly, in-

stead of representing the magnitudes directly, the alge-

braic symbols may represent the number of times that

a given or assumed unit of measure is contained in the

magnitudes ; as for the line A B, a may represent the

number of times that a known unit is contained in it."

In this case, as it is said, " the algebraic symbol repre-

sents an absti-aot number," which, in its turn, is sup-

posed to represent the line.

The third opinion is, that the letter represents not

the number of units contained in the line, but the

length of the line itself. Thus, we are told, "the

numerical measure of the line may, when known, be

substituted at pleasure for the letter which stands for

the line ; but it must always be remembered that wliat the

letter denotes is not the number which measures the length,

but the length itself. Thus, if A B (denoted by a) is

A a B two inclies long, and an inch is the

unit of length, we shall have a = 2 ; but if half an

inch is the unit, a = 4. Here a has two different

numerical values, M'hile that which a really represents,

the actual length of the line, is in both cases the same."

Now, if there be no real conflict of views in such

diverse teaching, there must certainly be some want
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of precision and clearness in the use of language. If

the student should confine his attention exclusively to

any one of these opinions, he might consider the authors

who teach it as quite clear and satisfactory; but if he

should extend his researches into other writers on the

same subject, he might, perhaps, begin to find that he

had something to unlearn as well as something further

to learn. He might be made to believe, as thousands

have believed, that algebraic symbols can only repre-

sent numbers and that, therefore, the only way to

bring geometrical magnitudes within the domain of

algebraic analysis is to reduce them to numbers by

comparing them with their respective units of measure.

But, then, if he should happen to see in the work of

some celebrated author the still more obvious position

laid down that algebraic symbols may be taken to re-

present magnitudes directly, as well as numbers, it is

highly probable he would be disturbed in his former

belief. It is likely that he would vacillate between

his old conviction and the new idea, and be perplexed.

Nor would he be delivered from this unpleasant

dilemma on being assured that in Analytical Geometry

symbols never denote numbers, but always the un-

divided magnitudes themselves. Suppose, then, that

each of these opinions contains the truth, it is evident

that it cannot contain the whole truth, and nothing

but the truth, clearly and adequately expressed. On
the contrary, the rays of truth they contain are so im-

perfectly adjusted that, in crossing each other, they

produce darkness, perplexity, and confusion in the

mind of the student. It is necessary, if possible, so to

eliminate and readjust the truths exhibited in these

opinions as to avoid all such interference, and all
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such darkening of the very first principles of the

science.

When it is said that a line is measured by a num-

ber, it is evident that an abstract number, such as 2

or 4, cannot be intended. Such numbers represent or

measure, not the length of a line, but only the ratio

of one line to another. If a line two inches long, for

example, be compared with an inch as the unit of

measure, the abstract number 2 will be the ratio of

this unit to the line, and not "the measure of the

line" or its " numerical value." Supposing the line

of two inches to be denoted by a, then we shall have,

not a = 2, but —^ =^ 2, or —

^

= 2. In like
1 inch 1 inch

manner, if half an inch be the unit of measure, we

shall have, not a= 4, but —-,
= 4. In the first

J inch

case, a = 2 inches, and in the second, a = 4 half

inches, so that, in both cases, we shall have the same

value for the same thing, since 2 inches and 4 half

inches are not " different numerical values."

'

It should always be remembered that it is only a

denominate number which truly " measures the length

of a line," and that abstract numbers merely represent

the ratios of lines. Thus, for example, if a line one

yard in length be compared with a foot as the unit of

measure, the abstract number 3 will be the ratio of

this unit to the line, and if an inch be the unit, then

'

36 will express this ratio, or the number of times the

unit is contained in the line measured. In neither

case, however, is 3 or 36 " the numerical measure of

the line" or the yard. This is measured, not by the

abstract number 3 or 36, but by the denominate num-
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bcr 3 feet, or 36 inches. Thus, for one and the same

thing we have not " two different numerical values,"

but only one and the same value.

The third opinion, then, appears to have arisen from

the supposition that an abstract number, such as 2 or

4, can measure the length of a line, whereas this is

always measured by a denominate number. And
this being the case, it makes no difference whether the

letter be taken to denote the number which measures

the length of the line or the length itself. For whether

a be taken to represent the length itself, as one yard,

or the number which measures it, as 3 feet or 36

inches, it will stand for precisely the same magnitude.

In one case it will stand for the whole, and in the

other for the undivided sum of the parts ! Hence, we

reject the third opinion as founded on a wrong notion

respecting the nature of the number which serves to

measure the length of a line, and as being a distinc-

tion without a difference.

The second opinion is involved in a similar fallacy.

For it proceeds on the assumption that a linear mag-

nitude may be " represented" by an " abstract num-

ber ;" whereas this can only represent the ratio of one

line to another. Indeed, an abstract number bears no

relation to the length of a line, and can be brought

into relation with it only by means of the unit of

measure, either expressed or understood. If, for ex-

ample, any one were asked how long a particular line

is, or how it should be represented, and he were to

answer it is three long, or should be represented by 3,

he would talk unintelligible nonsense. But if he were

to reply it is 3 feet, or 3 miles in length, and should

be represented accordingly, he would be understood.
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Hence, as abstract numbers do not represent lines, sc

the letters which stand for such numbers do not repre-

sent them.

There is, then, only one way of representing a line

by a letter, and that is by taking the letter to dfenote

the line itself, or, what amounts to the same thing, to

denote the denominate number which measures the

line. This may be done, no doubt, if we please ; but

is this way of representing lines admissible in Analyti-

cal Geometry ? It is certainly embarrassed with diffi-

culties which the authors of the second opinion do not

seem to have contemplated. If, for example, one line

6 feet long is denoted by a, and another 3 feet long is

denoted by b, it is easy to see that a + & = 9 feet,

a — 6 = 3 feet, and - ^ 2 ; but what shall we say of

the product abf Or, in other words, of 6 feet by 3

feet ? Almost any student, after having gone through

with elementary works on pure Geometry or Analyti-

cal Geometry, would be ready with the answer— 18

square feet. Yet there is no rule in mathematics for

the multiplication of one denominate number by an-

other. The product of feet by feet is just as unintel-

ligible as the product of cents by cents ; an absurd

operation with which some people perplex themselves

a great deal to no purpose. The multiplier must

always be an abstract number. The present writer

has often been asked by letter, " What is the product

of 25 cents by 25 cents?"—an inquiry as unintelligi-

ble as if it were what is the product of 25 cents by 25

apples, or the product of25 apples by 25 sheep ? Such

an absurdity would be less frequently committed if

elementary works on arithmetic had thrown sufficient
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light on the nature of multiplication. But, however

obvious this error, it is precisely similar to that com-

mitted by geometers when they seek the product of

any one concrete magnitude, such as a line or a sur-

face, by another.*

If we would avoid all such errors and difficulties,

we must lay aside the notion that magnitudes are

represented either directly or indirectly by letters.

There is no such representation in the case. Indeed,

the rationale or analysis of the whole process of sym-

bolical reasoning lies, as we shall see, beneath this

notion of representation, and is something deeper than

is usually supposed. Certainly, the abstract number

obtained by comparing a line with an assumed unit

of length cannot properly be called " the numerical

value of the line," as it is by so many authors. For,

if it could, then one and the same line might have an

infinity of numerical values, since the abstract number

would vary with every change in the assumed unit of

measure. But surely, if an infinity of numerical

values for one and the same thing be not an absurdity

in mathematics, it is far too vague and indefinite a

notion to find a place in the domain of the most precise

and exact of all the sciences.

The precise truth is, that in establishing the theo-

rems of geometry we do not aim to determine the

length of lines, but the relations they sustain to

each other, as well as to surfaces and solids. In

trigonometry, for example, we are concerned, not

with the absolute value of the magnitudes considered,

but with the relations existing between them ; so that

when a sufficient number of these magnitudes are

* Note A.
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known, or may be measured, the others may be de-

duced from them by means of the relations they bear

to each other. The same is true of all other parts of

geometry. Hence, what we need is not a representa-

tion of the magnitudes themselves, but of the relations

existing between them. We start from certain given

relations, we pass on to other relations by means of

reasoning; and having found those which are most

convenient for our purpose, the theorems of geometry

are established and ready for use. The precise man-

ner in which this is accomplished we shall now pro-

ceed to explain.

In all our reasoning we deal with abstract numbers

alone, or the symbols of abstract numbers. These, it

is true, do not, strictly speaking, represent lines or

other magnitudes, but the relations between these may,

and always should, represent the relations between

the magnitudes under consideration. This representa-

tion of relations, and not magnitudes, is all that is

necessary in symbolical reasoning, and if this be borne

in mind the rationale of the whole process may be.

made as clear as noonday.

The unit of linear measure is altogether arbitrary.

It may be an inch, a foot, a yard, a mile, or a thour

sand miles. But this unit once chosen, the square de-

scribed on it should be the unit of measure for sur-

faces, and the cube described on it the unit of measure

for solids. Each magnitude, whether a line, surface,

or solid, might be compared directly with its own
unit of measure, and the abstract number thence re-

sulting might be represented by a single letter. But

this course would be attended with much confusion

and perplexity. Hence it is far more convenient, and
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consequently far more common, to represent only the

abstract number obtained from a line by a single

letter.

Then M'ill the product of two letters represent the

abstract number answering to a surface. Suppose, for

example, that the line A B contains 6 units, and the

line CDS units. Let a denote the abstract number

A 1 1 1 1 1 1 B

C 1 1
1 D

6, and h the abstract number 3, then a i = 18. Now
this product a 6 is not a surface, nor the representative

of a surface. It is merely the abstract number 18.

But this number is exactly the same as the number

of square units contained in the rectangle whose sides

are A B and C D, as may be seen, if necessary, by

constructing the rectangle. Hence the surface of the

rectangle is represented or measured by 18 squares

described on the unit of length. This relation is uni-

versal, and we may always pass from the abstract unit

thus obtained by the product of any two letters to the

measure of the corresponding rectangle, by simply

considering the abstract units as so many concrete or

denominate units. This is what is intended, or at

least should always be intended, when it is asserted

that the product of two lines represents a surface ; a

proposition M'hich in its literal sense is wholly unin-

telligible.

In like manner the product of three letters, aho,\s

not a solid obtained by multiplying lines together,

which is an impossible operation. It is merely the

product of the three abstract numbers denoted by the
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letters a, b, and c, and is consequently an abstract

number. But this number contains precisely as many

units as there are solid units in the parallelopipedon

whose three edges are the lines answering to the num-

bers denoted by a, b, and c ; and hence we may easily

pass from this abstract number to the measure of the

parallelopipedon. We have merely to consider the

abstract number as so many concrete units of volume,

or cubes described on the linear unit. It is in this

sense, and in this sense alone, that the product of three

lines, as it is called, represents a solid. Bearing this

in mind, as we always should do, we may, for the sake

of brevity, continue to speak of one letter as repre-

senting a line, the product of two letters as represent-

ing a surface, and the product of three letters as repre-

senting a solid.

THE COMMONLY RECEIVED DEFINITION OF ANALYTICAL

GEOMETRY.

In most definitions this branch of mathematics is

exhibited as merely the application of algebra to

geometry. Thus, says M. De Fourcy in his treatise

on the subject, "Analytioal Geometry, or in other

terms, the Application of Algebra to Oeometry, is that

important branch of mathematics which teaches the

use of algebra in geometrical researches." This defi-

nition, like most others of the same science, cau impart

to the beginner no adequate idea of the thing defined.

It fails in this respect, partly because the geometrical

method used in this branch of mathematics is different

from any with which his previous studies have made

him acquainted, and partly because algebra itself un-

dergoes an important modification in its application to
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this new geometrical method. These points must be

cleared up and the student furnished with new ideas

before lie can form a correct notion of Analytical

Geometry.

According to the above definition, no new method,

no new principle is introduced by Analytical Geome-

try ; it is simply the use of algebra in geometrical in-

vestigations. Precisely the same idea underlies nearly

all definitions of this branch of mathematics. Thus,

in one of these definitions, we are told that " in the

application of algebra to geometry, usually called Ana-

lytic Geometry, the magnitudes of lines, angles, sur-

faces, and solids are expressed by means of the letters

of the alphabet, and each problem being put into

equations by the exercise of ingenuity, is solved by

the ordinary processes of algebra." In another it is

said that "Analytical Geometry" is that "branch of

mathematics in which the magnitudes considered are

represented by letters, and the properties and relations

of these magnitudes are made known by the applica-

tion of the various rules of algebra." Now these defi-

nitions, and others which might be produced, convey

no other idea of the science in question than that it is

the use of algebraic symbols and methods in geometri-

cal researches. They contain not the most distant

allusion to that new and profoundly conceived geo-

metrical method, nor to that peculiar modification of

algebra, by the combination of which Analytical Geo-

metry is constituted.

This beautiful science, it is universally conceded,

was created by Descartes. But if the above definition

be correct, then Vieta, and not Descartes, was the

creator of Analytical Geometry ; for he made precisely
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such use of algebra in his geometrical researches. In-

deed, we could not better describe the method of Vieta

than by adopting some one of the current definitions

of Analytical Geometry. It is most accurately ex-

hibited in the following words of a recent author:

" There are three kinds of geometrical magnitudes, viz.,

lines, surfaces, and solids. In geometry the properties

of these magnitudes are established by a course of

reasoning in which the magnitudes themselves are

constantly presented to the mind. Instead, however,

of reasoning directly upon the magnitudes, we may,

if we please, represent them by algebraic symbols.

Having done this, we may operate on these symbols

by the known methods of algebra, and all the results

which are obtained will be as true for the geometrical

quantities as for the algebraic symbols by which they

are represented. This method of treating the subject

is called Analytical Geometry." Now every word of

this description is accurately and fully realized in the

labors of Vieta. Hence, if it had been given as. a

definition of the "Application of Algebra to Geoo!^-

try," as left by him, it would have been free from

objection. But it cannot be accepted as a definition

of Analytical Geometry. For such method, however

valuable in itself, is not Analytical Geometry, nor

even one of its characteristic properties. It is not that

grand era of light by which the modern geometry is

separated from the ancient. For that era, or the

creation of Analytical Geometry, is, according to the

very author of the above definition himself, due to

Descartes. Yet his definition of Analytical Geometry,

like most others, includes the method of Vieta, and ex-

cludes the method ofits acknowledged author, Descartes.
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Even before the time of Vieta, Regiomontanus,

Tartaglia, and Bombelli solved problems in geometry

by means of algebra. But in each case they used

numbers to express the known lines and letters to

represent the unknown ones. Hence their method

was confined within narrow limits when compared

with the method of Vieta. He was the first who em-

ployed letters to represent known as well as unknown
quantities ; a change, says Montucla, " to which alge-

bra is indebted for a great part of its progress." It

enabled Vieta and • his successors to make great ad-

vances in Geometry as well as in algebra. But it did

not enable him to reveal or to foresee the new method

which was destined to give so mighty an impulse to

the human mind, and produce so wonderful a revolu-

tion in the entire science of mathematics, whether

pure or mixed. This was reserved for the transcend-

ent genius of Descartes.

It seems to me that a definition of Analytical Geo-

metry should include the method of Descartes (its

acknowledged author) and exclude that of Vieta. It

is certain that if we should adopt the above definition,

we should be compelled to include Trigonometry, as

well as "the solution of determinate problems," in

Analytical Geometry. Indeed, M. De Fourcy, after

having defined Analytical Geometry as above stated,

expressly adds, " Under this point of view it ought to

comprehend trigonometry, Avhich forms the first part

of this treatise." In like manner, Biot, Bourdon,

Laeroix, and other French writers, embrace trigo-

nemetry, as well as " the solution of determinate pro-

blems," in their works on Analytical Geometry. This

seems to be demanded by logical consistency, or a
10
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strict adherence to fundamental conceptions, since

analytical trigonometry, no less than determinate

problems of geometry, is clearly included in their

definitions. We shall exclude botl:, because neither

comes within the definition which we intend to adopt.

Trigonometry and determinate problems of geometry

were, indeed, both treated by means of algebra long

before Analytical Geometry, properly so called, had

an existence or had been conceived by its great author.

Those American writers, however, who have adopted

the above definition, exclude trigonometry, thougli

not the solution of determinate problems, from their

works on Analytical Geometry. Hence, in excluding

both, the additional omission will be very slight, inas-

much as the solutions of determinate problems in the

works referred to constitute only a few pages. These

few pages, too, being little more than a mere exten-

sion of ordinary algebra, should, it seems to me, form

a sequel to that branch of mathematics, rather than a

heterogeneous prefix to Analytical Geometry. It is

certain that by such a disposition of parts we should

restore an entire unity and harmony of conception to

the beautiful method of Descartes, by which a new

face has been put on the whole science of mathematics.

This method and that of Vieta are, as M. Biot say?,

" totally separated in their object." Hence he was

right in determining, as he did, " to fix precisely and

cause to be comprehended this division of the Appli-

cation of Algebra, to Geometry into two distinct

branches," or methods of investigation. Since these

two branches, then, are so " totally separated in their

objects," as wisll as in their methods, we shall separate

them in our definitions. We certainly shall not, in
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our definition, cause the method of Yieta to cover the

whole ground of Analytical Geometry, to the entire

exclusion of the method of Descartes. The method

of Vieta is, indeed, nowhere regarded as constituting

Analytical Geometry, except in the usual definitions

of this branch of mathematics. The authors of these

definitions themselves entertain no such opinion. On
the contrary, they unanimously regard the method of

Descartes as constituting Analytical Geometry, though

this view is expressed elsewhere than in their defini-

tions. Thus, after having disposed of " determinate

problems," and come to those investigations which

belong to the Cartesian method, one of these authors

adds in a parenthesis, " and such investigations consti-

tute the science of Analytical Geometry." If so, then

surely the nature of such investigations should not

have been excluded, as it has been, from his definition

of this branch of mathematics. In like manner, an-

other of these authors, after having discussed the sub-

ject of determinate problems, enters on the method

of Descartes with the declaration that this philosopher

by his great discovery " really created the science of

Analytical Geometry." Why then was this great dis-

covery excluded from his definition of the science ?

In spite of their definitions, we have, indeed, the

authority of these writers themselves that Analyti-

cal Geometry, properly so called, is constituted by

something diflFerent and higher and better than

the algebraic solutions of determinate problems of

geometry.
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THE OBJECT OF ANALYTICAL GEOMETRY.

In order to unfold in as clear and precise a manner

as possible the great fundamental conceptions of Ana-

lytical Geometry, we shall consider first, the object of

the science ; and, secondly, the means by which this

object is attained,

" Geometrical magnitudes, viz., lines, surfaces, and

solids," are, it is frequently said, the objects of Ana-

lytical Geometry. But ihis statement can hardly be

accepted as true. For lines, surfaces, and solids, con-

sidered as magnitudes, are not, properly speaking, the

objects of this science at all. Lines and surfaces, it is

true, as well as points, are considered in Analytical

Geometry; but then they are discussed with reference

to their form and position, and not to their magnitude.

Questions o? form and position are those with which

Analytical Geometry, as such, is chiefly and pre-emi-

nently conversant. So long, indeed, as our attention

is confined to questions of magnitude, whether jiertain-

ing to lines, surfaces, or solids, we are in the domain

of the old geometry. It is the peculiar province and

the distinctive glory of the new that it deals with the

higher and more beautiful questions oi form.

In relation to the discoveries of Descartes in mixed

analysis, Montucla says, " That which holds the first

rank, and which is the foundation of all the others, is

the application to be made of algebra to the geometry

of curves. We say to the geometry of curves, because

we have seen that the application of algebra to ordi-

nary problems is much more ancient." If we would

obtain a correct idea of his method, then, we must lay

aside as unsuitcd to our purpose the division of geo-
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metrical magnitudes into lines, surfaces, and solids.

For however important this division or familiar to the

mind of the beginner, it is not adapted to throw light

on the nature of Analytical Geometry. If we would

comprehend this, we must divide all our geometrical

ideas into three classes— namely, into ideas oi magni-

tude, position, and form. Of these the most easily

dealt with are ideas of magnitudes, because magni-

tudes, Avhether lines, surfaces, or solids, may be readily

represented by algebraic symbols.

Indeed, to find a " geometrical locus," or, in other

words, to detei'mine the form of a line, was the unsolved

problem bequeathed by antiquity to Descartes, and

with the solution of which he bequeathed his great

method to posterity. Thus the new geometry had its

beginning in a question of form, and, from that day

to this, all its most brilliant triumphs and beautiful

discoveries have related to questions of form. These

liigh questions, it is true, his method brings down to

simple considerations of magnitude, or, more properly

speaking, the relations of linear magnitudes. The

objects it considers are not magnitudes; they are forms

and tiie properties of form. The magnitudes it uses

and represents by letters are only auxiliary quantities

introduced to aid the mind in its higher work on

forms. They are the scaffolding merely, not the edi-

fice. In what manner this edifice, this beautiful

theory of the ideal forms of space, has been reared by

Analytical Geometry, we shall now proceed to ex-

plain.

io«-
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THE GEOMETRIC METHOD OF ANALYTICAL GEOMETEY.

The new geometry consists, as we have said, of a

geometric method and a modified form of algebra.

Both of these should, therefore, be embraced in its

definition. We begin with an explanation of its geo-

metric method.

" By co-ordinate geometiy," says Mr. O'Brien, " we

mean that method or system invented by Descartes, in

which the position of points are determined and the

forms of lines and surfaces defined and classified by

means of what are called co-ordinates." This appears

to be a correct definition of the system of Descartes

;

at least in so far as its geometric method is concerned.

But that method, as we shall see, however important

as an integral portion of the system, is barren in itself,

and becomes fruitful only by a union with the analytic

method of the same system. Adopting, for the pre-

sent, the above definition as applicable to the geometric

method of Descartes, it remains for us to unfold and

illustrate its meaning.

It is easy to see that every question of form depends

on one of position, since the form of any line or surface

is constituted by the position of its various points. If,

then, the position of every point of a line (to begin

with the more simple case) be determined, it is clear

that the form of the line will be fixed. Hence the

first step in the system of Descartes, or in the modern

doctrine of form, is the method by which it determines

the position of a point in a plane.
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THE METHOD OF DETERMINING THE POSITION OF A
POINT.

From time immemorial the position of a point on

the surface of the earth has been determined by its dis-

tance from two fixed lines— namely, an assumed meri-

dian and the equator. These two distances, known
as the longitude and latitude of the point or place, are

among the most natural and easy means by whicli its

position can be fixed. Yet this method, although so

natural, so simple, ajnd so familiar in practice, lay

upon the very surface of things for many centuries

before its immense scientific value began to be appre-

liended. Descartes, in the seventeenth century, was

the first philosopher by whom it was adopted into

geometry, generalized, and made to impart incalcula-

ble new resources to the science.

In order to fix the position of a point on a plane,

we trace in the plane, in conformity with the method

of Descartes, two right lines X X' and Y Y', which
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make a given angle (usually a right angle) with each

other, and we draw through the point P, whose posi-

tion is to be determined, parallel to these lines, the

two right lines P M and P N, cutting them in the

points M and N. Now it is evident that the point P
will be determined when we know the points M and

N, for we can draw through these points M P parallel

to O Y, and N P parallel to O X', and these parallels

will intersect in the point P. But the point M is

determined Avhen we know the distance O M, and

the point N when we know the distance O N. Hence

the point P is determined or fixed by means of the

distance O M or its equal N P, and the distance O N
or its equal M P. That is, on the supposition that P
lies in the angle Y O X'; otherwise its position could

not be fixed by these magnitudes alone.

For were these magnitudes O M and O N given,

this would not serve to determine the point to which

they answer, since there are four points P, P', P",

and V", all of which answer to precisely the same

magnitudes or distances. To avoid the confusion

which must have resulted from such uncertainty of

position, Descartes adopted a very simple and efficient

artifice. Instead of employing a different set of letters

for each of the angles in which the required point

might be found, he effected his object and cleared

away every obscurity by the simple use of the signs

+ and — . That is, he represented the magnitudes

O M and O N by the same letters, and they were

made to determine the point P, P', P", or P'", ac-

cording to the signs attached to these letters.

Thus, for example, O M is represented by a and

O N by 6y when a is plus, it is laid off in the direction
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from O toward X', and when it is minus it is mea-

sured in the opposite direction, or from O toward X.

In like manner, when b is plus, it is counted from O
toward Y, or above the line X X', and when it is

minus, in the opposite direction, or from O toward

Y'. What is thus said of the distances O M and

O N, or their representatives a and b, is applicable to

all similar distances. Thus, by the use of two letters

and two signs, the position of any point in any one of

the four infinite quarters of the plane is indicated

without the least uncertainty or confusion.

The distance O M, or its equal N P, is called the

ahscissa, and the distance O N or its equal M P, is

called the ordinate of the point P to which they

answer. These distances when taken conjointly are

denominated the co-ordinates of the point. Instead

of saying the point whose abscissa is denoted by a and

ordinate by b, we simply say, the point (a, b). The

line X X', on which the abscissas are laid off, is called

the axis of abscissas, and the line Y Y' the axis of

ordinates. Both together are denominated the co-or-

dinate axes. The point O, in which the co-ordinate

axes intersect, is known as the origin of co-ordinates
;

or more briefly, as the origin.

As the object is to determine, not the absolute but

only the relative position of points, so the co-ordinate

axes, or lines of reference, may be assumed at pleasure.-

We may place the origin, or incline the axes, so as to

meet the exigencies of any particular case, or to an-

swer any special purpose. In general, however, it is

more convenient to refer points to axes which make

right angles with each other; in which case the sys-

tem of co-ordinates is rectangular. If they are in-
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clined to each other, then they form an oblique system

of co-ordinates. The former, or the rectangular sys-

tem of co-ordinates, should always be understood,

unless it be otherwise expressed.

In the foregoing remarks we have spoken of the

point P which is supposed to remain fixed, and whose

co-ordinates a and b are therefore constant. But sup-

pose this point, or any other, to move on the plane of

the co-ordinate axes, it is evident that its co-ordinates

will no longer remain constant or unchanged. On
the contrary, as the point moves, either one or both of

its co-ordinates must undergo corresponding changes

of value. These variable co-ordinates, answering to

all the positions of the movable point, or to all the

points of the line it describes, are in general denoted

by the letters x and y, and the line X X' on which

the abscissas are measured is sometimes called the axis

of X, and the line Y Y', on which ordinates are laid

off, the axis of y.

As X and y may assume all possible values, whether

positive or negative, so they may represent the co-or-
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dinates of any point in the plane of the axes. The
angle to which the point belongs will depend, as we
have seen, on the algebraic signs of its co-ordinates x

and y. By means of the preceding diagram we may
perceive at a glance the angle to which any point be-

longs when the signs of its co-ordinates are known.

Thus we always have

X positive and y positive for the angle Y O X',

X negative and y positive for the angle Y O X,
X negative and y negative for the angle Y'O X,
X positive and y negative for the angle Y'O X'.

In Analytical Geometry, then, the letters x and y re-

present not- unknown, determinate values or magni-

tudes as in algebra, but variable quantities. It is

this use of variable co-ordinates and symbols of inde-

termination to represent them Avhich constitutes the

very essence of the Cartesian system of geometry— a

system of whose analytic portion, however, we have

as yet caught only an exceedingly feeble glimpse. It

justly claims, in this place, a somewhat fuller expo-

sition, especially since its value is so completely over-

looked in the definitions of most writers on the sub-

ject. Even the definition of Mr. O'Brien contains,

as we have seen, only the geometrical method of Des-

cartes, and not the most distant allusion to its ana-

lytic method. Indeed, in his preface, this author

asserts that the subject of which he treats " is usually

styled Atmlyiical Geometry, but its real nature seems

to be the better expressed by the title Co-ordinate

Geometry, since it consists entirely in the application of

the method of co-ordinates to the solution of geometrical

problems." Yet this method of co-ordinates, if sepa-

rated from the method of indeterminate analysis, can
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conduct US but a very little way on the high road of

Analytical Geometry, and even that little way it must

proceed with extreme slowness and difficulty. Ana-

lytical Geometry should, it seems, be at least styled

the applieatlon of indeterminate algebraic analysis to

the geometrical method of co-ordinaies. We shall

now proceed to justify this opinion, and show that the

science in question does not " entirely consist" in the

application of the geometrical method.

THE ANALYTIC METHOD OF ANALYTICAL GEOMETRY.

The first step of this method consists in the analytic

representation of geometrical forms. If a point move

at random on the plane of the axes, it is evident that

its variable co-ordinates will be wholly independent

of each other, and consequently no relation can be

established between them. The line or curve thus

described by a point moving without law or order

does not come within the domain of Analytical Geo-

metry.

There is, however, an infinity of lines which, instead

of being described by a point moving at random, are

traced according to some fixed law or invariable order.

In such cases there exists between the abscissa and

ordinate of each point of the line a constant relation

or unchanging mutual dependence. In passing from

one point of such line to another, the abscissa and

ordinate must change, but the relation between them

may remain the same. In a great variety of instances

this uniform relation is such that it may be expressed

by an equation between x and y, the symbols of the

co-ordinates so related to each other. The equation

which thus expresses the relation between the abscissa and
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ordinate of each point of a line is called the equation of

the line. The line, in its turn, is called the locus of the

equation ; but it is still more frequently called the locus

of the point by which it is described.

The equation of a line once formed will enable us,

by suitable operations upon it, to detect all the circum-

stances and to discover all the properties of the line

or locus to which it belongs. A few simple illustra-

tions will serve to put this great fundamental truth in

a clearer light. Suppose, then, that there is a right line,

such as B B', which divides the angle Y O X' into

two equal parts, then it is clear that its ordinate will

always be equal to its abscissa. The abscissa may
assume all possible values from zero to plus infinity;

yet through all its changes it will remain constantly

equal to the corresponding ordinate. This invariable

relation between the two variable co-ordinates is per-

fectly expressed or represented by the equation

which is therefore the equation of the line B B'. In

u F
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like manner, tUe equation of any line institutes preoisdy

the same relation between the symbols x and y as that

which exists between the co-ordinates symbolized or re-

presented by them.

If in this equation we give positive values to x, we

shall find positive values for y, and these values will

determine points of the right line in the angle Y X'.

If we give negative values to x, we shall then have

negative values for y, and these values will determine

points of the line in the angle Y' O X. But, leaving

this most simple of all cases, let us pass on to still

more interesting examples.

Let it be required, then, to find the equation of the

circumference of a given circle, and show how this

equation may be made to demonstrate some of the

properties of that curve. We place the origin of co-

ordinates at the centre of the given circle A C B D,

and denote its known radius by the letter r. Then,

for any point of the circumference, as P, the square of

the ordinate, plus the square of the abscissa, is equal

to the square of the radius, since the sum of the squares

on the sides of a right-angled triangle is equal to the
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square of its liypothenuse. This relation is expressed

by the equation

•f + x' = r'^,

and as this is true for every point of the circumference,

so this is the equation of the curve. Now from this

equation all the properties of the circumference of the

circle may be evolved by suitable transformations.

As our present purpose is merely illustrative, we

shall, in this place, evolve only a single property.

Then the equation gives

y^ = {r -\- x) (r — x);

butj- + a;=AM;r-— a;= MBj andy= PM; hence

PM= =AMXMB;

that is, the perpendtotilar let fall from a point of the

circumference of a circle to its diameter is a mean pro-

portional between the segments into which it divides the

diameter—a well-known property of the circle.

Or, if we choose, we may set out from this property,

and, putting it into an equation, deduce therefrom the

ordinary definition of the circumference of a circle.

Thus, let it be required to prove that the line whose

ordinate is always a mean proportional between the

segments into which it divides a given distance on the

axis of X, is the circumference of a circle ; or, in other

words, is everywhere equidistant from a certain point

in the plane of the axes. We suppose A B, the given

distance, ^ 2 r, and we place the origin of co-ordinates

O at its middle point, so that A O ^ O B = r. Then,
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Y

if P be any point on the line in question, we shall

have from its definition

PM2 = AMXMB;
but P M = y ; AM = r + a; ; and M B = r — a;;

hence, by substitution, y' = (r + x) (r— x) = r'' — x'',

or y'' -\- 3^ = r^

;

but y^ + x' = P=,

therefor^ O P' = i"°, or O P =: r.

That is to say, any point of the line in question is

always at the same distance r from the origin of co-

ordinates; in other words, it is the circumference of a

circle whose centre is in the middle of the line A B.

Indeed, this might -have been inferred from its equa-

tion y'' -^ x^ = r^, which is that of the circle whose

centre is at the origin. What we have thus shown so

very partially in regard to the circumference of a circle

is equally true of other curved lines discussed in Ana-

lytical Geometry. That is, we may set out from any

one of their properties as a definition, and putting this
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into an equation, deduce its other properties therefrom

by suitable transformations of its equation.

We shall add one more illustration. Suppose the

question, for example, be to determine the principal

circumstances of position and form of the line, the

square of whose ordinate varies as the corresponding

abscissa ; or, in other words, the square of whose ordir

nate is always equal to the rectangle of the abscissa

into some constant line, as 2 p. The equation of this

line is simply the analytic statement of its definition,

and is

or 'jf
^2px.

Now if, in the first place, we wish to find the point in

which the line cuts the axis of X, we must determine

the co-ordinates of that point, since every point is made

known by its co-ordinates. But as the required point

lies on the axes of x, it is evident that its ordinate is

o, and this, substituted for y in the equation, gives

o = 2px; ov x = o

for the corresponding value of the abscissa. Hence

the line cuts the axis of X at the origin of co-ordi-

nates, since that is the only point whose co-ordinates

are both o.

Again, we put the equation in this form

:

y=±V2px,

from which we see that if x be minus, then y will be

imaginary ; or, in other words, there will be no corres-

11

«



126 THE PHILOSOFHT OF MATHEMATICS.

ponding value of the ordinate. That is to say, there

is no point of the curve answering to a negative value

of X, or to the left of the axis Y Y'. But if we assign

any positive value to x, there will be two equal values

for y; the one plus and the other minus. Hence there

are two points of the curve answering to each positive

value of X ; the one above and the other below the

axis of X, and at equal distances from it. As this is'

true for every value of x, though it may vary from

O to plus infinity, it appears that the two branches of

the curve are unlimited on the right side of the axis

Y Y', or proceed to infinity.

If we give any particular value to a;, as a;= 4, then

we shall have y = ± v/2p . 4 = ± 21^2 j); and by

means of these known pairs of co-ordinates, we may

determine two points of the line— one answering to

the plus, and the other answering to the minus, value

of y. In like manner we might determine and mark

any number of points belonging to the locus of the

equation y^±\/'^px. By pursuing this method

we should discover that the locus in question is a curve,

whose general form P O P' is represented in tlie dia-

gram below. But this would be an exceedingly tedi-



THE PHILOSOPBY OF MATHEMATICS. 127

ous method, and would require immense calculations

to determine the curve with any degree of accuracy.

It is, indeed, the method of co-ordinates, and serves

to illustrate the imperfections of that method when

unaided by the higher powers of the analytic portion

of the Cartesian system.

By calling this to our aid, we may easily discover a

property of the line in question which will enable us

to describe it by a continuous motion without the

necessity of such tedious or operose calculations. Thus,

if we lay off O F ^ -, and O L = -, and through the

point L erect an indefinfte perpendicular D D' to the

axis X X', then each and every point of the curve in

question will enjoy this remarkable property— namely,

it will he at an equal distance from the point F and the

line D D'.

That is, if from any point, as P, of the curve, a

right line P F be drawn to F, and another perpen-

dicular to D D', then P F = P D. For

or FF'=y'' + x^—px+^ ;

but y' = 2p X

;

hence, 77'= x" +px+^ ={x +P-y,

or PF=a;+^;
2
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but V'D=x+^;

therefore,

PF =PD,

as enunciated. This remarkable property enables us

to describe the curve in question by a continued

motion.

The above very simple illustrations, or instances of

discovery, are but mere scintillations of that great

analytic method which seems as inexhaustible as the

sun, and which has already poured floods of light on

every department of the exact sciences. The geomet-

rical method itself, however important, is chiefly valu-

able as a basis for this analytic method. The two

methods are, however, indispensable to each other,

and it was by the happy union of both that Analytical

Geometry was created. It was, moreover, by the

wonderful fecundity and power of this combination

that the way was opened for the discovery of the In-

finitesimal Calculus, and for the solution of the grand

problems of the material universe, as well as for the

renovation and reconstruction of all the physical

sciences.

The great beauty of this method consists in the

generality of its solutions— a generality which is capa-

ble of being rendered far greater than is usual in works

on Analytical Geometry. To illustrate this point:

Let it be required to find the equation of a curve such

that the square of any ordinate- shall be to the rectangle

of the distances between its foot and two fixed points on

tJie axis of x in a given ratio.

Let O and D be the two fixed points on the axis of
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X, and let the distance between them, O D, be denoted

by 2 a ; take the origin of co-ordinates at O, and sup-

pose the given ratio is b^ : a', in which b represents

any line whatever. At the point A, the middle of the

line O D, erect the perpendicular A B = 6, and let P
be any point of the curve whose equation is required.

O M is the abscissa, and P M is the ordinate of that

point, and the two distances between its foot, M, and

the two fixed points O and D are M D and O M.
Hence, by the condition of the problem, we Jiave

P M^ : O M X M D : : 6= : a=,

or y^ : X {2 a — x) •.•.b'^ la?

;

since P M, for any point of the curve, is the variable

ordinate y, and O M the variable abscissa x, and since

MD = OD — OM = 2a — a;.

Hence r — (2ax — a;^)

is the equation of the curve required.

F *
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Now the whole folio of Apollonius, in which he dis-

cusses with such wonderful ability the conic sections, is

wrapped up and contained in this one equation. For,

by the discussion of this one equation, we may easily

ascertain the form and all the other properties of the

circle, of the ellipse, of the hyperbola, and of the para-

bola;* unfolding from one short analytic expression

the whole system of beautiful truths which caused

Apollonius to be regarded as the greatest of all the

geometers of the ancient world, except Archimedes'.

The method of Descartes consisted in the hajjpy use

of a system of auxiliary variables, such as x and y,

representing the variable co-ordinates of a series of

points. In addition to these variables, Newton and

Leibnitz employed another system composed of the

variable increments or decrements which x andy under-

dergo in passing from one point to another ; or, in

other words, the variable differences of the variable

co-ordinates. Thus, the systems of these two illus-

trious geometers were both erected on the foundation

which Descartes had laid, and which had introduced

so wonderful a revolution into the whole science of

mathematics. It has been well said, then, that "Des-

cartes not only perfected the work of Vieta, but he

also invented methods at once simple and fruitful, in

order to bring the theory of curves within the grasp

of the algebraic analysis, and these methods are, in the

eyes of posterity, the most beautiful title to glory of

that celebrated philosopher." f

* Any one who is master of the fundamental idea of Descartes

may easily do this; it is done in my unpublished work on Analyti-

cal Geometry.

t See Note B.
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THE METHOD OF INDETEEMINATES.

Descartes approached the differential calculus in more

directions than one. " It seems'to me," says Carnot,

" that Descartes, by his method of indeterminates, ap-

proached very near to the infinitesimal analysis; or

rather, it seems to me, that the infinitesimal analysis

is no other than the happy application of the method

of indeterminates."

" The fundamental principle of the method of inde-

terminates, or of indeterminate co-eificients, consists in

this, that if m'c have an equation of the form

K-\-'Ex+Cx^-\-T>a?-\- etc. = 0,

in which the co-efRcients A, B, C, etc., are constant,

and X a small quantity, which can be supposed as small

as we please, it necessarily follows that each of these

co-efficients taken separately must be equal to zero;

that is to say, that we shall always have

A = 0, B = 0, C = 0, etc.,

whatever may be the number of the terms of the

equation.

" Indeed, since we can suppose x as small as we
please, we can also render as small as we please the

sum of all the terms which has x for its factoj- ; that is

to say, the sum of all the terras which follow the first.

Then that first term A differs as little as we please

from ; but A being a constant cannot differ as little

as we please from 0, since then it would be a variable,

then it can be only 0, then we have A^ ; there re-

maining thus

:
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B a; + C «= + D a:» + etc. = 0.

I divide the whole by x, and I have

B + C a; + D a;' + etc. = 0,

from which we deduce B = by the same reasoning

that we have given to prove A= 0; the same reason-

ing would likewise prove C= 0, D = 0, etc.

" That granted, let there be an equation with only

two terms

—

A+Ba; = 0,

in which the first term is constant and the second sus-

ceptible of being rendered as small as we please ; that

equation cannot subsist after what has been said, un-

less A and B x are each in particular equal to zero.

Then we may establish this as a general principle, and

, as an immediate corollary from the method of inde-

terminates, that if the sum or the difference of two pre-

tetided quantities is equal to zero, and if the one of the

two can be supposed as small as we please, while the

other contains nothing arbitrary, then the two pretended

quantities will be each in particular equal to zero."

"This principle alone suffices for the resolution

by ordinary algebra of all the questions which be-

long to the infinitesimal analysis. The respective

procedures of the one and of the other methods, sim-

plified as they ought to be, are absolutely the same

;

all the difference is in the manner of considering the

question ; the quantities which are neglected in the one

as infinitely small are unexpressed in the other, though

considered as finite, because it is demonstrated that

they ought to eliminate themselves by themselves, that
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is to say, to destroy one another in the result of the

calcuhis.

" Indeed, it is easy to perceive that the result can

be only an equation with two terms of which each in

particular is equal to zero ; we can then suppress before-

hand, in the course of the calculus, all the terms of

these two equations of which we do not wish to make

use. Let us apply this theory of indeterminates to

some examples.

" For a second example," * says the author, " let us

propose to prove that the area of a circle is equal to the

product of its circumference by the half of its radius
;

that is to say, denoting the radius by R, the ratio of

the circumference to the radius by n, and consequently

that circumference by tt R, S the surface of the circle,

we ought to have
S = |n-R^

" In order to prove this I inscribe in the circle a regu-

lar polygon, then I successively double the number of

its sides until the area of the polygon differs as little as

we please from the area of the circle. At the same

time the perimeter of the polygon will differ as little

as we please from the circumference n R, and the apo-

them as little as we please from the radius R. Then
the area S will differ as little as we please from the

J n' R^ ; then if we make

the quantity />, if it is not zero, can at least be sup-

posed as small as we please. That supposed, I put the

equation under the form

* The first example is quite too long for my purpose, and besides,

it would not be understood by the reader without a knowledge of

what had gone before in the work of Carnot.

12
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an equation of two terms, the first of which contains

nothing arbitrary, and the second of which, on the

contrary, can be supposed as small as we please ; then,

by the theory of indeterminates, each of these.terms in

particular is equal to 0, then we have

S — i;rE= = 0, orS = i;rE^;

which was to be demonstrated.

" Let it be pi'oposed now to find the value which it

is necessary to give to x, in order that its function

ax— x^ may be a maximum.
" The case of a maximum ought evidently to have

place, when by adding to the indeterminate x an arbi-

trary increment x', the ratio of the corresponding aug-

mentation of the proposed function ax — a;'^ toa;' can

be rendered as small as we please by diminishing x'

more and more.

" But if I add to x the quantity x', I shall have for

the augmentation of the proposed function

a{x-\- x') — {x-\- x'Y — {ax — x''),

or by reducing

{a — 2x)x' — x'\

it is then the ratio of this quantity to x', or

which we ought to have the power to suppose as small

as we please. Let this quantity^ p, we shall then have

a — 2x — x' = p,
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or (a — 2 a;) — {x' + />) = 0,

an equation of two terms, tlie first of which contains

nothing arbitrary, and the second of which may be

supposed as small as we please ; then by the theory of

indeterminates, each of these terms taken separately

is equal to 0. Then we have

a— 2x = 0, ov X ^ ^ a,

which was required to be found.

" Let it be proposed to prove that two pyramids with

the same bases and the same heights are equal to each

other.

" Consider these pyramids divided into the same

number of frustums, all of the same height. Each

of these frustums may evidently be regarded as com-

posed of two parts, the one of which will be a prism

having for its base the smaller of the two which termi-

nates the frustum, and the other will be a sort of

aglet which surrounds that prism.

" If, then, we call V,V, the volumes of the two pyra-

mids, P, P', the respective sums of the prisms, of

which we have just spoken, q, q', the respective sums

of the aglets, we shall have

V= P+g,V'= P' + ff',

or V-g=P,V'— 5' = P'

But it is clear that P = P', then

Y-q= Y'- q', or (V- V) - {q- q') = 0.

But the first term of this equation contains nothing

arbitrary, and the second can evidently be supposed as
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small as we please. Then, by the theory of indetermi-

nates, each of these terms in particular is equal to zero.

Then we have

V-V' = 0, orV = V^

which was to be demonstrated." *

After proving, by the same method, that the volume

of a pyramid is equal to one-third of its base by its

altitude, and showing that the process is identical with

that of the calculus, Carnot adds :
" We then see that

the method of indeterminates furnishes a rigorous

demonstration of the infinitesimal analysis, and that it

gives at the same time the means of supplying its

place, if we wish, by the ordinary analysis. It is

desirable, perhaps, that the differential and integral

calculus had been arrived at by this route, which

was as natural as the road that was actually taken,

and would have prevented all the difficulties."!

But however ingenious or striking such application

of the method of indeterminates, if Carnot had only

tried that method a little further, he would have found

that it is an exceedingly poor substitute for the differ-

ential and integral calculus. For these, in fact, grap-

ple successfully with an infinity of difficult questions

which the method of indeterminates is wholly unable

to solve.

* Eeflexions, etc., Chapter III. f Ibid.



CHAPTER VI.

THE METHOD OF LEIBNITZ.

" Leibnitz who was the first," -says Carnot,* "to

give rules for the infinitesimal calculus, established it

upon the principle that we can take at pleasure, the

one for the other, two finite magnitudes which differ

from each other only by a quantity infinitely small.

This principle had the advantage of an extreme sim-

plicity and of a very facile application. It was adopted

as a kind of axiom, and he contented himself with re-

garding these infinitely small quantities as quantities

less than those which can be appreciated or seized by

the imagination. Soon this principle operated prodi-

gies in the hands of Leibnitz hitaself, of the brothers

Bernouilli, of de L'HSpital, etc. Still it was not free

from objection; they reproached Leibnitz (1) with em-

ploying the expression infinitely small quantities with-

out having previously defined it; (2) with leaving in

doubt, in some sort, whether he regarded his calculus

as absolutely rigorous, or as a simple method of ap-

proximation." f

* Reflexions, etc., Chapter I., p. 36.

f This objection to the calculus is two hundred years old; it has

always arisen, naturally, if not necessarily, in Tiew of the fact that

infinitely small quantities are thrown out as nothing. And yet a

Cambridge mathematician says, even at the present day, that we
cannot so easily answer this objection, because we cannot see how it

arises

!

12* 137
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This principle was adopted as an axiom, or rather

as " a sort of axiom." Now is this really an axiom

or otherwise ? Is it true or false ? Will it make no

possible difference in the result whether we throw

away as nothing or retain as something these infinitely

small quantities ? If we subtract one quantity, how-

ever small, from another, shall we not at least dimin-

ish that other by an amount equal to the quantity sub-

tracted? It seems so to me. Yet Carnot, who has

looked so deeply into the " metaphysics" ofthe calculus,

appears, at least occasionally, to entertain a different

opinion. For having referred to the brilliant career

of the axiom in question, and to the prodigies it had

performed in the hands of Leibnitz and others, he

adds :
" The illustrious author and the celebrated men

who adopted his idea {i. e., the above axiom) contented

themselves with showing by the solution of problems

the most difficult, the fecundity of the principle, and

the constant agreement of its results with those of the

ordinary analysis, aifd the ascendency which it gives

to the new calculus. These multiplied successes vic-

toriously proved that all the objections were only

specious ; but these savans did not reply in a direct

manner, and the knot of the difficulty remained. There

are truths with which all just minds are struck at

first, of which, however, the rigorous demonstration

escapes for a long time the most skillful." We should

not be surprised, however, if we should hereafter find

Carnot himself urging the very objection he here pro-

nounces "only specious," and branding the above

axiom as an error ; for it seems to be one of the estab-

lished penalties of nature that the man who begins by

denying the truth shall end by contradicting himself.
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This truth, if it be one, has certainly had to wait a

long time on " the skillful " for a demonstration. It

is now, indeed, more than two hundred years since it

is supposed to have " struck all just minds," and yet,

although it has always been objected to, it is just as

far as ever from having been demonstrated.

The calculus of Leibnitz, we are told, was " estab-

lished upon this principle" by its author. If, then,

the thing were possible, why did not Leibnitz himself

demonstrate this principle, and put the foundation of

his system beyond cavil and controversy? Or why
did not M. Carnot, or some other admirer of this great

fundamental truth, vouchsafe a demonstration of it to

the world ? Shall it wait for ever on the " most skill-

ful " for a demonstration, and wait in vain ? Carnot

offers a graceful apology for Leibnitz. " It is not

astonishing," says he, " that Leibnitz should not have

attempted the rigorous demonstration of a principle

which was then generally regarded as an axiom." *

But he knew that this was an axiom only with the

initiated few, while, on all sides, there came up against

it objections from the common sense and reason of

mankind. He only replied, if we may believe M.
Carnot, by "the solution of the most difficult pro-

blems," and by showing "the ascendency which it

gave to the new calculus," and thus " victoriously

proved that every objection was only specious."

" But," adds our author, " he did not reply in a direct

manner, and the knot of the difficulty remained."

Why, then, did he not reply in a direct manner,' and

for ever dissipate the knot of the difficulty ? The truth

is, that the dark knot of the difficulty was in the mind

* Reflexions, ete., Chapter III., p. 14.
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of Leibnitz himself, as well as in the minds of those

who objected against the logical basis of his method.

If, as Carnot says, Leibnitz failed to reply in a

direct manner to the objection in question, it cannot be

said that he made no attempt to furnish such a reply.

For it is well known that he did attempt such a reply,

and also that it was a failure.* " Leibnitz," says M.

Comte, " urged to answer, had presented an explana-

tion entirely erroneous, saying that he treated infinitely

small quantities as inoomparables, and that he neglected

them in comparison with finite quantities, 'like

grains of sand in comparison with the sea ;' a view

which would have completely changed the nature of

his analysis by reducing it to a mere approximative

calculus," etcf A greater than M. Comte had, many

years before him, said precisely the same thing. " M.

Leibnitz," says D'Alembert, " embarrassed by the ob-

jections which he felt would be made to infinitely

small quantities, such as the differential calculus con-

sidered them, has preferred to reduce his infinitely

small quantities to be only inoomparables, which ruined

the geometrical exactitude of the calculus." Now, if

instead of all this embarrassment, vacillation, and

uncertainty, Leibnitz had only demonstrated his funda-

mental principle, then his reply would Iiave ibeen far

more satisfactory. Even the unskillful would have

been compelled to recognize its truth, and lay aside

their objections to his method. But, as it was, this

illustrious man bequeathed, with all its apparent un-

certainty and darkness, the fundamental principle of

his method to his followers.

* Montucla's Histoire de Mathematiques, Vol. I., Leibnitz,

f Philosophy of Mathematics, Chapter III., p. 99.
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" The Marquis de L'Hopital," one of the most cele-

brated of those followers, " was the first to write a

systematic treatise on the 'Analysis of Infinitely Small

Quantities," Hitherto its principles constituted, for

the most part, a sort of esoteric doctrine for the initi-

ated ; but now, by this most venerable man and accom-

plished mathematician, they were openly submitted to

the inspection of the world. The whole superstruc-

ture rests on two assumptions, which the author calls

" demands or suppositions." The first of these is thus

stated by the Marquis

:

I. FIRST DEMAND OR SUPPOSITION.

" We demand that we can take indifferently the one

for the other, two quantities which differ from each

other only by an infinitely small quantity, or (which

is the same thing) that a quantity which is increased

or diminished only by another quantity infinitely* less

than itself, can be considered as remaining the same." *

True, it may be considered as remaining the same, if

we please ; but every intelligent student asks. Will it

actually remain the same ? If we " increase or dimin-

ish" a quantity, ever so little, will it not be increased

or diminished? And if we throw out any quantities,

however small, as nothing, will not this make some

difference in the result ? Thus, it seems to be written

over the very door of the mathematical school of Leib-

nitz and de L'H6pitaI, " let no man enter here who

cannot take his first principles upon trust." When
young Bossut, afterward the historian of mathematics,

ventured to hint his doubts respecting this first de-

mand, and ask for light: "Never mind," said his

* Analyse des Infiniment Petits, Art. 2, p. 3.
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teacher ; " go to work with the calculus, and you will

soon become a believer." * He took the advice—what

else could he do ?—and ceased to be a thinker in orfer

to become a worker.

II. SECOND DEMAND OE SUPPOSITION.

" We demand," says the Marquis, " that a curve

line can be considered as the assemblage of an infinity

of right lines, each infinitely small ; or (what is the

same thing) as a polygon with an infinite number of

sides, each infinitely small, which determine by the

angles which they make with each other the curva-

ture of the line."

Now this is the principle which, in the preceding

pages, I have so earnestly combated. The truth is,

as I shall presently demoiistrate, that these two false

principles or demands lead to errors, which, being

opposite and equal, exactly neutralize each other, so

that the great inventor of this intellectual machine, as

well as those who worked it the most successfully, were

blindly conducted to accurate conclusions.

In the preface to his work, the Marquis de L'H6pital

says, " The two demands or suppositions which I have

made at the commencement of this treatise, and upon

which alone it is supported, appear to me so evident,

that I believe they can leave no doubt in the mind of

attentive readers. I could easily have demonstrated

them after the manner of the ancients, if I had not

proposed to myself to be short upon the things which

are already known, and devote myself principally to

* Most teachers of the present day are wiser : they avoid all such

difficulties; they do not state the first principles at all; they just set

their pupils to work with the calculus, and they become believers

rather than thinkers.
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those which are new." I have been curious to know
what sort of demonstrations the Marquis had found

for this "sort of axioms." It is pretty certain, it

seems to me, that they could hardly have been per-

fectly clear and satisfactory to his own mind, or else

he would have laid such demonstrations, like blocks

of transparent adamant, at the foundation of hir?

system. It is evident he should have done so, for

this woidd have removed a world of doubt from the

opponents of the new system, and a world of difficulty

from its friends. Indeed, if there be principles by
which his postulates or demands could have been de-

raonstratetJ, then those principles must have been more

evident and satisfactory than these postulates or de-

mands themselves, and should, therefore, have been

made to support them. A little time would not, most

assuredly, have been misemployed in giving such

additional firmness and durability to so vast and com-

plicated and costly a structure.

The third edition of the " Analyse," the one now
before me, is "followed by a commentary [nearly half

as large as the book itself], for the better understand-

ing of the most difficult places of the work." Now,

strange to say, one of these "most difficult places"

which a commentary is deemed necessary to clear up,

is the first "demand or supposition" which is laid

down by the author as self-evident. " The demand,

or rather the supposition of article 2, page 3," says the

commentary, " which beginners consider only with

pain, contains nothing at the bottom which is not very

reasonable." Then the commentator proceeds to show,

by illustrations drawn from the world of matter, that

this first axiom is not unreasonable. Not unreason-
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able indeed ! Should not the axioms of geometry be

reason itself, and so clear in the transcendent light of

their own evidence as to repudiate and reject all illus-

trations from the material world ? The very existence

of such a commentary is, indeed, a sad commentary ou

the certainty of the axioms it strives to recommend.

" In fact," says the commentator, " we regard as in-

finitely exact the operations of geometers and astrono-

mers ; they make, however, every day, omissions much

more considerable than those of the algebraists. When
a geometer, for example, takes the height of a moun-

tain, does he pay attention to the grain of sand which the

wind has raised upon its summit? When the astrono-

mers reason about the fixed stars, do they not neglect

the diameter of the earth, whose value is about three

thousand leagues ? When they calculate the eclipse

of the moon, do they not regard the earth as a sphere,

and consequently pay no attention to the houses, the

towns, or the mountains which are found on its sur-

face ? But it is much less to neglect only d x, since it

takes an infinite number of d x's to make one x ; then

the differential calculus is the most exact of all calcu-

luses ; then the demand of article 2 contains nothing

unreasonable. All these comparisons are drawn from

the Course of Mathematics of Wolff, torn. 1, p. 418."

Thus, from this curious commentary it appears that

the editor of the work of de L'H6pital in 1798, as

\vell as Wolff, the great disciple of Leibnitz, regarded

the differential calculus as merely a method of approxi-

mation. Leibnitz himself, as we have already seen,

was at times more than half inclined to adopt the same

view
;
plainly confessing that he neglected infinitely

small quantities in comparison with finite ones, " like
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grains of sand in comparison with the sea." Indeed,

he must have been forced to this conclusion and fixed

in this belief, if pure geometry had not saved him

from the error. He certainly expected that the rejec-

tion of his infinitesimals would tell on the perfect

accuracy of his results ; but he found, in fact, that

these often coincided exactly with the conclusions of •

pure geometry, not differing from the truth by even so

much as a grain of sand from the sea, or from the

solar system itself. But, not comprehending why there

should not have been at least an infinitely small error

in his conclusions, he simply stood amazed, as thou-

sands have since done, before the mystery of his

method, sometimes calling his " infinitely small quan-

tities zeros," sometimes " real quantities," and some-

times " fictions." When he considered these quantities

in their origin, and looked at the little lines which

their symbols represented, he thought they must be

real quantities ; but since these quantities might be

infinitely less than the imagination of man could con-

ceive, and since the omission of them led to absolutely

exact results, he was inclined to believe that they must

be veritable zeros. But, not being able to reconcile

these opposite views, or to rest in either, he sometimes

effected a sort of compromise, and considered his infi-

nitely small quantities as merely analytical " fictions."

The great celebrities of the mathematical world since

the time of Leibnitz, the most illustrious names, in-

deed, in the history of the science, may be divided into

three classes, and ranged as advocates of these three

several views of the differential calculus.

It was long before the true secret was discovered.

"After various attempts, more or less imperfect," says

13 G
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M. Comte, "a distinguished geometer, Carnot, pre-

sented at last the true, direct, logical explanation of

the method of Leibnitz, by showing it to be founded

on the principle of the necessary compensation of errors,

this being, in fact, the precise and luminous manifes-

tation of what Leibnitz had vaguely and confusedly

perceived." * Now Carnot owed absolutely no part

of his discovery to Leibnitz. If Leibnitz, indeed,

obscurely perceived the existence of such a compensa-

tion of errors in the working of his method, he has

certainly nowhere given the most obscure intimation

of it in his writings. Such a hint from the master,

however unsupported by argument, Avould have served

at least to put some of his followers on the true path

of inquiry. But no such hint was given. Leibnitz,

it is true, perceived several things very obscurely ; but

the real secret of his method was not one of them.

Hence he put his followers on the "wrong scent only,

and never upon the true one. Indeed, if he had sus-

pected his system of a secret compensation of errors,

then he must also have suspected that the two " de-

mands or suppositions" on which it rested were both

false, and it would not have been honest in him to lay

them down as self-evident truths or axioms.

The explanation of Carnot is certainly, as far as it

goes, perfectly satisfactory. In the second edition of

his work he quotes with an evident and justifiable

satisfaction, the approbation which the great author

of the Theory of Functions had bestowed on his expla-

nation. "In terminating," says he, "this exposition

of the doctrine of compensations, I believe I may
honor myself with the opinion of the great man whose

* Philosophy of Mathematics, Chap. III., p. 100.
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recent loss the learned world deplores, Lagrange ! He
thus expresses himself on the subject in the last edition

of his ' Th^orie des Fonctions Analytiques :'

—

"
' In regarding a curve/ says Lagrange, ' as a poly-

gon of an infinite number of sides, each infinitely small,

and of which the prolongation is the tangent of the

curve, it is clear that we make an erroneous supposi-

tion ; but this error finds itself corrected in the calcu-

lus by the omission which is made of infinitely small

quantities. This can be easily shown in examples,

but it would be, perhaps, difficult to give a general

demonstration of it.'

" Behold," exclaims Carnot, " my whole theory re-

sumed with more clearness and precision than I could

put into it myself!" * Let us, then, see this theory, or

rather its demonstration. Carnot begins with a special

case.

" For example," says he, " let it be proposed to

* It is, then, Carnot's emphatic opinion that the two demands or

postulates of the method of Leibnitz are both " clearly erroneous sup-

positions" or false hypotheses. Yet, as we have seen, when the first

of these demands was assailed by others as untrue, he pronounces

the objection "only specious;" he excuses Leibnitz for not having

demonstrated it, because it was "generally regarded as an axiom,"

and even places it among those truths which, at first, "strilie all

just minds," but of which the demonstrations long remain to be dis-

covered. Now, how could Leibnitz have demonstrated an error?

Or how long will it be before such a thing is demonstrated ? Or,

again, if any one objects to receiving as true a manifest error, how
can it be said that his objection is "only specious?" The truth is,

that instead of that metaphysical clearness and firmness of mind

which never loses sight of a principle, but carries it as a steady light

into all the dark regions of speculation, there is some little wavering

and vacillation in the views of Carnot, and occasionally downright

contradictions, especially in what he says in regard to the method

of Leibnitz.
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draw a tangent to the circumference B M D at the

given point M.
" Let C be the centre of the circle, D C B the axis;

G S Q P

suppose the abscissa D P = a;, the ordinate M P= y,

and let T P be the subtangent required.

" In order to find it, let us consider the circle as a

polygon with a very great number of sides ; let M N
be one of these sides, prolonged even to the axis; that

will evidently be the tangent in question, since that

line does not penetrate to the interior of the polygon

;

let fall the perpendicular M O upon N Q, which is

parallel to M P, and name a the radius of the circle

;

this supposed, we shall evidently have

MO:NO::TP:MP,
MO_ TP_TP
NO~ MP~ y

'or

On the other hand, the equation of the curve for the

point M being y' ^ 2 a a; — a;', it will be for the point

N,(y + N 0)== 2 a (a; + M O)— (a; + M 0)=, taking

from this equation the first, found for the point M,

and reducing, we have

MO ^ 2y+ NO ;/'

N 0~2a— 2a;— MO'
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equaling this value of to that which has been
^ ^ NO
found above, and multiplying by y, it becomes

TP- y(2y + N0)
2a— 2a;—MO'

" If then M O and N O were known, we should have

the required value of T P j but these quantities M O
N O are very small, since they are less than the side

M N, which, by hypothesis, is itself very small. Then

we can neglect without sensible error these quantities

in comparison with the quantities 2 y and 2x — 2 a to

which they are added. Then the equation reduces

itself to

TP = -^,
a— X

which it was necessary to find.

"If this result is not absolutely exact, it is at least

evident that in practice it can pass for such, since the

quantities M O, N O are extremely small ; but any one

who should have no idea of the doctrine of the infinite,

would perhaps be greatly astonished if we should say

to him that the equation T P = —^— , not only ap-
a— X

proaches the truth very nearly, but is really most per-

fectly exact ; it is, however, a thing of which it is easy

to assure one's self by seeking T P, according to the

principle that the tangent is perpendicular to the ex-

tremity of the radius ; for it is obvious that the similar

triangles Q P M, M P T, give

CP:MP::MP:TP,
33 »
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or a— xiywy-.TV;

hence, T P= —^—, as above.
a — X

" Let us see, then, how in the equation

Tp- y(2y + NO)
2a— 2a;— mo'

found above, it has happened that in neglecting M O
and N O we have not altered the justness of the result,

or rather how that result has become exact by the

suppression of these quantities, and why it was not so

before.

" But we can render very simply the reason why
this has happened in the solution of the problem

above treated, in remarking that, the hypothesis

from which it set out being false, since it is absolutely

impossible tliat a circle can ever be considered as a true

polygon, whatever may be the number of its sides,

there ought to result from this hypothesis an error in

the equation

TP- y(2y + N0)
2a— 2a;— MO'

and that the result T P = —^— being nevertheless
a — X

certainly exact, as we prove by the comparison of

the two triangles C P M, M P T, we have been able

to neglect M O and N O in the first equation ; and

indeed we ought to have done so in order to rectify

the calculus, and to destroy the error which had arisen

from the false hypotheses from which we had set out.

To neglect the quantities of that nature is then not
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only permitted in such a case, but it is necessary : it is

the sole manner of expressing exactly the conditions

of the problem," *

" The exact result T P = —^— has then been ob-
a — x

tained only by a compensation of errors; and that com-

pensation can be rendered still more sensible by treat-

ing the above example in a little different manner,

that is to say, by considering the circle as a true curve,

and not as a polygon,

" For this purpose, from a point R, taken arbi-

trarily at any distance from the point M, let the line

R S be drawn parallel to M P, and through the points

R and M let the secant R T' be drawn ; we shall evi-

dently have

T' P : M P : : M Z : R Z,

and dividing T' P into its parts, we have

TP+TT'=MP—

.

RZ
This laid down, if we imagine that R S moves parallel

to itself in approaching continually to M P, it is ob-

vious that the point T' will at the same time approach

more and more to the point T, and that we can conse-

quently render T' T as small as we please without

the established relations ceasing to exist. If then I

neglect the quantity T' T in the equation I have just

found, there will in truth result an error in the equa-

tion T P = M P— , to which the first will then be
RZ'

* This last expression seems a little obscure, since it is difficult to

perceive how the neglect of such quantities is necessary " to express

the conditions of the problem."
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reduced ; but that error can be attenuated as much as

we please by making E, S approach M P as much as

will be necessary ; that is to say, that the two members

of that equation may be made to differ as little as we

please from equality.

" In like manner we have =
,EZ 2a— 2x—M.Z'

and this equation is perfectly exact, whatever may be

the position of E ; that is to say, whatever may be the

values ofM Z and E Z. But the more E S shall ap-

proach M P, the more small will the lines M Z and

E Z become, and if we neglect them in the second

member of the equation, the error that will result

M Z V
therefrom in the —— = —-— to which it will then

E Z a— ^

be reduced, would, as in the first, be rendered as small

as we n^ight think proper.

" This being so, without having regard to the errors

which I may always render as small as I please, I

treat the two equations

TP =MP^and^= ^-,
EZ EZ a—x

Avhich I have just found, as if they were both perfectly

exact; substituting then in the first, the value of

taken from the last, I have for the result
E Z

'

T P= ^
, as above.

a— X

This result is perfectly just, since it agrees with that

which we obtain by comparing the triangles C P M,
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MPT, and yet the equations T P = y and

-——= —^— , from which it is deduced, are both cer-
R Z a— X

tainly false, since the distance of E. S from M P has

not been supposed nothing, nor even very small, but

equal to any arbitrary line whatever. It follows, as

a necessary consequence, that the errors have been

mutually compensated by the combination of the two

erroneous equations."

" Behold, then," says Carnot, " the fact of the com-

pensation of errors clearly and conclusively proved."

He very justly concludes that there is a mutual

compensation of errors in the case considered by him,

because the combination of the two imperfect equations

resulted in an absolutely perfect one. If, however, he

had pointed out the error on the one side and on the

other, and then proved that they were exactly equal

and opposite, his exposition would, it seems to me,

have been rather more " precise and luminous." This

is precisely the course pursued by Bishop Berkeley in

his demonstration of the same fact. It may be well,

therefore, to give his illustrative proof of this compen-

sation of errors in the ordinary use of the calculus.

" Forasmuch," says he, " as it may perhaps seem an

unaccountable paradox that mathematicians should

deduce true propositions from false principles, be right

in the conclusion, and yet err in the premises, I shall

endeavor particularly to explain why this may come

to pass, and slww how error may bringforth truth, though

it cannot bring forth seienee."

" In order, therefore, to clear up this point, we will

suppose, for instance, that a tangent is to be drawn to

G*
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a parabola, and examine the progress of the affair as

it is performed by infinitesimal differences. Let A B
be a curve, the abscissa A P= a;, the ordinate P B = y

;

the difference of the abscissa P M = da;, the difference

of the ordinate 'R'S = dy. Now, by supposing the

curve to be a polygon, and consequently B N, the in-

crement or difference of the curve to be a straight line

coincident with the tangent, and the differential tri-

angle B R N to be similar to the triangle T P B, the

subtangent is found a fourth proportional to R N

:

E B : P B ; that is, to dy.dx: y. Hence the sub-

11 Oj 7>

tangent will be . But then there is an error
dy

arising from the forementioned false supposition (i. e.,

that the curve is a polygon with a great number of

sides), whence the value of P T comes out greater than

the truth ; for in reality it is not the triangle R N B,

but R L B, which is similar to P B T, and therefore

(instead of R N") R L should have been the fourth term

of the proportion; i. e., R N + N L, i. e., dy -\- z;

whence the true expression for the subtangent should

1/ (Z cc

There was, therefore, an error ofhave been
dy + z
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defect in making dy the divisor, which error is equal

to z; i. e., N L the line comprehended between the

curve and the tangent. Now, by the nature of the

curve y'' = p X, supposing p to be the parameter,

whence by the rule of differences, 2y dy =^pdx and

dy = - . But if you multiply y-\-dy by itself,

and retain the whole product without rejecting the

square of the difference, it will then come out, by sub-

stituting the augmented quantities in the equation of

a d X d ij^

the curve, thatdy^-'- ^^ truly. There was,
2y 2y

therefore, an error of excess in making dy==- ,

dy
which followed from the erroneous rule of differences.

difAnd the measure of this error is —^ = z. Therefore
22/

the two errors, being equal and contrary, destroy each

other, the first error of defect being corrected by a

second of excess.

" If you had committed only one error, you would

not then come at a true solution of the problem. But

by virtue of a twofold mistake you arrive, though not

at science, yet at truth. For science it cannot be

called when you proceed blindfold- and arrive at truth

not knowing hq^v or by what means. To demonstrate

dv'^
that z is equal to —^ , let B R or d 2; be m, and E N

23/
_

or dy he 11. By the thirty-third proposition* of the

first book of the Conies of Apollonius, and from similar

triangles.

* Which is, that the subtangeut T P is equal to 2 x.
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2x:y::m: n + z = —^.
2x

Likewise from the nature of the parabola y' + 2 y w +
n' = p X -\- p m, and 2 y n + n' = p m; wherefore

^^ — = m ; and because y'^ =px,^ will be equal

to X. Therefore, substituting these values instead of

m and x, we shall have

. my 2 y^ n + y**'.

2x 2y''

.1 , • 1 2yn-\- n^
that IS, n-f- z= —^

,

which being reduced gives

Z=— = -^. Q. E. D.*

22/22/
Thus it is shown that when we seek the value of

the subtangent on the supposition that the curve is a

polygon, we make dy too small by the line N L. On
the other hand, it is shown that when in seeking the

value oi dy from the differential equation of the curve,

dy^
we throw out the minus quantity —^ as infinitely

22/

small in comparison with dy, we make dy too great

dy'^
by this quantity —^. But if we first make dy too

2y

small by N L, and then too great by —^, it only re-

22/_
_

mains to be shown that these two quantities are ex-

* The Analyst, XXI. and XXII. Berkeley's Works, Vol. II., f.

422.
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actly equal in order to establish the fact of a compen-

sation of errors. Accordingly, this is done by the

Bishop of Cloyne, with the addition of the " Q. e. d."

That is to say, the error resulting from one " demand

or supposition" of the Leibnitzian method is corrected

by the error arising from its other demand or sup-

position.

It is not true, then, as M. Comte alleges, that Car-

not was the first to present the true " explanation of the

method of Leibnitz." This honor is due to the Bishop

of Cloyne, not to the great French minister of war ; to

the philosopher, not to the mathematician ; for the ex-

planation of Berkeley preceded that of Carnot by more

than half a century. Both explanations rest, as we

have seen, on particular examples instead of general

demonstrations. Hence Lagrange, after approving

the explanation or adopting it as his own view of the

subject, adds :
" This may be easily shown in exam-

ples, but it would be, perhaps, difficult to give a gene-

ral demonstration." Carnot dissents. " I believe,"

says he, that " in the demonstration which I have

-given of it" there " is wanting nothing either of ex-

actitude or of generality." His general demonstration,

however, is metaphysical rather than mathematical—
a sort of demonstration which does not always carry

irresistible conviction to the mind.

Having exhibited his examples, Cajgiot proceeds to

ascertain " the sign by which it is known that the

compensation has taken place in operations similar to

the preceding, and the means of proving it in each

particular case." This is done only by a process of

" general reasoning," as it is very properly called by

M. Comte, and it is fairly exhibited in his Philosophy
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of Mathemaiics. " In establishing," says M. Comte,

" the diiferential equation of phenomena, we substi-

tute for the immediate elements of the different quan-

tities considered other simpler infinitesimals, which

differ from them infinitely little in comparison with

them, and this substitution constitutes the principal

artifice of the method of Leibnitz, which without it

would possess no real facility for the formation of

equations. Carnot regards such an hypothesis as

really producing an error in the equation thus obtained,

and which for this reason he calls imperfect; only it

is clear that this error must be infinitely small. Now,

on the other hand, all the analytical operations,

whether of differentiation or of integration, which are

performed upon these differential equations in order to

raise them to finite equations by eliminating all the

infinitesimals which have been introduced as auxili-

aries, produce as constantly by their nature, as is easily

seen, other analogous errors, so that an exact compen-

sation takes place, and the finite equations, in the

M'ords of Carnot, become perfect. Carnot views, as a

certain and invariable indication of the actual estab-

lishment of this necessary compensation, the complete

elimination of the various infinitely small quantities,

Avhich is always, in fact, the final object of all the

operations of the transcendental analysis; for if we

have committed no other infractions of the general

rules of reasoning than those thus exacted by the very

nature of the infinitesimal method, the infinitely small

errors thus produced cannot have engendered other

than infinitely small ones in all the equations, and the

relations are necessarily of a rigorous exactitude as soon

as they exist between finite quantities alone, since the

M



THE PHILOSOPHY OF MATHEMATICS. 159

only errors then possible must be finite ones, while

none such can have entered. All this general reason-

ing is founded on the conception of infinitesimal quan-

tities, regarded as indefinitely decreasing, while tliose

from which they are derived are regarded as fixed." *

Lagrange had, perhaps, no objection to offer to this

"general reasoning;" it appears certain that he did

not regard it as a "general demonstration." "It

would, perhaps," says he, "be dilBcult to give a

general demonstration" of the fact of a compensation

of errors in the use of the calculus. It is easy to give

a far more general demonstration than that proposed

by either Carnot or Berkeley. For the one of these

relates, as we have seen, merely to the question of

finding a tangent to the circumference of a circle at

a given point,f and the other to the same problem

with reference to the parabola. Now, this compensa-

tion of errors may be demonstrated to take place in

the process for finding the tangent to curve lines in

general.

Let 3/ = F a; be the equation of such a curve, in

Fig. 1.

Y

D^

* Philosophy of Mathematics, Book I., Chap. III., p. 101.

•f
Carnot, I am aware, has furnished a second example; but this

does not make the proof general.
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which y is equal, not- to one particular function of x,

as in the case of the circle or parabola, but to any

algebraic function whatever. Then, if the curve be

convex toward the axis of x, as in Fig. 1, and if an

increment h be given to the abscissa A D := a;, the

ordinate y will take an increment E P', whose value

may thus be found :

P D or 3/= F a;,

P'D'or^/' = F (a; + /t) = Fa; +^ - +^

—

dxl da? 1.1

H • V, etc.,

da;» 1.2.3 ' '

by Taylor's Theorem,

or P'D'— PD,orEF=^.- +^ -^
da; 1 da;M..2

+ jy^_l_ +etc., (=M);

and the ordinate of the tangent line P T will take the

corresponding increment E T, whose value, found in

the same way, gives

dx 1

Hence

EP'-ET^P'T^*^^— + ^.—^+,etc.
da;= 1.2 da;^ 1.2.3

Now, the subtangent s is the fourth term of the

exactly true proportion,

ET:A::2/:.s;

but E T, being unknown, cannot be Used for the pur-
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pose of finding the value of s. Hence E P' is in the

method of Leibnitz substituted for E T, and this sub-

stitution is justified on the ground that the difference

between the two quantities is so very small. But still

this difference is, as we have seen,

p/ rp -^ J_ +^ —!L etc.

da;' 1.2 dct^l.2.S

When the operator comes, however, to find the value

of P' E from the equation of the curve, this value of

P' T is precisely the quantity thrown away as nothing

by the side of an infinitely small one of the first order.

Thus, by the one step, the true value is made too

great by the quantity P' T, and by the other the sub-

stituted value is reduced by precisely the same amount

P' T. That is to say, the same quantity was first

added and then subtracted, which, of course, made no

difference in the result.

If the curve be concave toward the axis of z, as

Fig. 2.

seen in Fig. 2, then the true value, T E, or the line

which gives the exact value of s by the proportion,

T E : /i : : 2/ : s,
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will be made too small by the substitution of P' E in

its place. But, in this case, the value of P' T, or

—^
h, etc.,

da;' 1.2 da;' 1.2. 3
'

which is rejected in finding the value of P' E, is a

negative quantity ; and, consequently, in throwing it

away from the value of P' E as nothing, that value

was increased by the same amount it had been dimin-

ished. That value of P' T is negative, because the

curve being concave toward the axis of x, its first term

—- . is negative, and, since it is supposed very

small, this term is greater than the sum of all the

others.* In this case, then, the same quantity was

subtracted and added, which, of course, did not affect

the result. Behold the very simple process which, by

means of signs and symbols and false hypotheses, has

been transformed into the sublime mystery of the trans-

cendental analysis.

In spite of its logical defects, however, the method

of Leibnitz has generally been adopted in practice;

because of the facility with which it reduces questions

of the infinitesimal analysis to equations, and arrives at

their solutions. Suppose, for example, the question

be to find the tangent line to the point M of any curve

A P, which is given by its equation. The method of

Leibnitz identifies the infinitely small chord M D with

the corresponding arc of the curve, and, consequently,

regards the figure M D E, composed of the small arc

M D and the increments of x and y, as a rectilinear

* See any work on the Differential Calculus.
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DE= dy
AB = a;

BM= y

triangle. (This is, in fact, the diiferential triangle of

Barrow.) Hence, according to this method,

DE dy BM
or —^ =

,ME dx T B'

or the tangent of the angle which the tangent line re-

quired makes with the axis of x. To find the value

of this tangent, then, it is only necessary to ascertain

d 11

the value of —^ for the point M from the equation of
dx

the curve.

If the curve, for example, be the common parabola,

whose equation is -if^^p x, the value in question

may be easily ascertained. Thus, give to A B, or to

• X for the point M, the infinitely small increment d x,

and B M, or y for the same point, will take the in-

finitely small increment d y. Then,

{jj + dyy= 2p{x^dx),

or y'^ -\- 2y'dy ^ dy'^ = 2px-\- 2pdx.

Hence 2y dy -{- dy^ =^2pdx.

Bntdy'', being an infinitely small quantity ofthe second

order, may be rejected as nothing by the side of 2y dy,

and hence we have
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2y dy = 2pdx

dy^p
dx 2/'

for the value of the tangent required, which, by the

rigorous method of geometry, is known to be perfectly

exact.

Now, as we have already seen, there are in this pro-

cess two errors which correct each other; the one

arising from the false hypothesis that the curve A P
is made up of infinitely small right lines, such asM D;

and the other from the equally false postulate or de-

mand that the infinitely small quantity dy^ may be

rigorously regarded as nothing by the side of 2ydy.

These false hypotheses are, however, wholly unneces-

sary, and only serve to darken science by words with-

out knowledge. That is to say, we may, in the per-

fectly clear light of correct principles, do precisely the

same thing that is done in the method of Leibnitz by

means of his false hypotheses and false logic. To

show this, let us resume the question of finding the

tangent to point M of the common parabola A P. The

tangent line T D' has, according to the definition, only

the point M in common with the curve, and

D^ E _ B M
ME T B'
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But D' E is unknown, since the equation of the tan-

gent line, the very thing to be determined, is not given.

Hence we adopt or apply the method of Leibnitz,

without adopting his view of that method. That is

D E .

to say, we start with the expression instead of

D' E
, or we take the small quantity D E as the sameME 1 ^

with D' E, just as he does ; but not because D E is the

same as D' E, or because M D coincides with M D'. On
T) '{^

the contrary, we set out with because its value
•^' ME

may be found from the equation of its curve, and be-

cause its limit is , the thing to be determined.
M E ^

Thus, give any increment B C or A to x, and y will

take a corresponding increment D E or A;. Then

(2/ + kf = 2^) (a; + h)

h p F
Ti~y 2y'

Now, if we conceive li to become less and less, then will

. h .

h also decrease; but the ratio j will continually in-

crease, and approach more and more nearly to an

D' E
equality with -, which is a constant quantity. It

is obvious that by making A continue to decrease, the

fraction may be made to differ as little as we
ME ^
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please from , and hence—— is the hmit oi^ ME ME ME
k

or -. But since the two members of the above equa-

tion are always equal, their limits are equal. That is

to say, the limit of

fc . D' E dy p- IS -, or —=^ = *-,

A M E da: y

as above found. Thus, the two processes not only

lead to the same result, but they are, from beginning

to end, precisely the same. The steps in both m'ethods

are precisely the same, and the only difference is in the

rationale or explanation of these steps. In the one

method the steps are only so many false hypotheses or

assertions, while, in the other, they are carried on in

the light of clearly correct principles. In the method

. D E

.

of limits we begin with in order to find the value^ ME
D' E

of , not because the two lines D E and D' E are

M E'

equal to each other, or because the difference between

them is so small that it is no difference at all, but

T) Tf
simply because the limit of , which may be easily^^ ME' '

found from the equation of the curve, is exactly equal

D' E
to the constant quantity , which is the quantity

required.

The principle of this case is universal in its appli-

cation. 'That is to say, in the method of limits we

may always put one set of variables for another, pro-
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vided that in passing tQ the limit the result will be the

same. We may not only do this, but in many eases

we must do it, in order to arrive at the desired result.

It is, in fact, the sum and substance of the infinitesimal

analysis to put one set of quantities for another ; i. e.,

of auxiliary quantities for the quantities proposed to

be found, in order to arrive indirectly at the result or

value, or relation, which cannot be directly obtained.

In the method of Leibnitz, it is supposed that one set

of quantities may be put for another, because they

differ so little from each other that they may be re-

garded as rigorously equal, and that an infinitely small

quantity may be rejected as "absolutely nothing."

On the other hand, the method of limits proceeds on

the principle that any one quantity may be put for

another, provided that in passing to their limits, the

limit of their difference is zero.

In order to illustrate his first " demand or supposi-

tion," the Marquis de L'H6pital says :
" We demand,

for example, that we can take A.p for AP, pm for

P M, the space Kpm for the space A P M, the little

space MPpm for the little rectangle M P|) E, the

little sector A M m for the little triangle A M S, the

angle p Am for the angle P A M." Now he sup-



168 THE PHILOS0PMr OF MATSEMA TICS.

posed that we can with Impunity take the one of these

several quantities for the other, because they are equal,

and also that an infinitely small quantity may be re-

jected as nothing with equal impunity. But, in fact,

these quantities can, in the infinitesimal analysis, be

respectively taken for one another, because their limits

are precisely the same, and because, by throwing out

the indefinitely small increments as nothing, or by

making them zeros, we pass to their limits, which are

the same. The space M Pj3 m, for example, is not

equal to the space M Pp R, but always differs from it

by the little space M E m. But yet M P^ R may be

put for MPjjm, because their limit is precisely the

same line M P, and because when P p is made

equal to zero, or treated as nothing, the limit M P is

reached.

"AVe demand," says the Marquis de L'H6pital,

" that we can take indifferently the one of two quan-

tities for the other which differ from each other only

by a quantity infinitely small ; or (what is the same

thing) that a quantity which is augmented or dimin-

ished by another quantity infinitely small can be con-

sidered as remaining the same." This demand is

refused. The two quantities are not equal ; they differ

by an indefinitely small quantity, but their limits are

the same ; and when the indefinitely small difference is

reduced to nothing, the same limit or value is obtained.

Leibnitz put the one of two quantities for another, be-

cause they were the same, whereas he should have

done so because their limits were the same. Again,

in throwing out indefinitely small quantitfes as zeros,

he supposed that, instead of affecting th® result by this

step, everything would " remain the same ;" whereas,
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in fact, this step perfected the operation and reached

the true result by passing to the limit. Thus, the

true route of the infinitesimal analysis is an indirect

one, and Leibnitz, by seeking to make it direct, only

caused it to appear absurd.

15 II



CHAPTER VII.

THE METHOD OF NEWTON.

The method of Newton, as delivered by himself,

has never been free from difficulties and objections.

Indeed, even among learned mathematicians and his

greatest admirers there have been obstinate disputes

respecting his explanation or view of his own method

of " prime and ultimate ratios." The very first de-

monstration, in fact, of the first book of his Principia,

in which he lays the corner-stone of his whole method,

has long been the subject of controversy among the

friends and admirers of the system ; each party show-

ing its veneration for the great author by imputing its

own views to him, and complaining of the misunder-

standing and wrong interpretation of the other. This

controversy has, no doubt, been of real service to the

cause of science, since it enables the studious disciple

of Newton to obtain a clearer insight into the princi-

ples and mechanism of his method than he himself

ever possessed. It has, indeed, been chiefly by the

means of this controversy that time and the progress

of ideas have cleared away the obscurities which origi-

nally hung around the great invention of Newton.

But if we would profit by the labors of time in this

respect, as well as by those of Sir Isaac, M'e must lay

aside the spirit in which the controversy has been car-

ried on, and view all sides and all pretended demon-
iro
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strations with an equal eye, not even excepting those

of the Prindpia itself.

The corner-stone or foundation of Newton's method

is thus laid iu the Principia: "Quantities, and the

ratios of quantities, that during any finite time constantly

approach each other, and be/ore the end of tliat time

approach nearer than any given difference, are ultimately

equal."

" If you deny it, suppose them to be ultimately un-

equal, and let D be their ultimate difference. There-

fore they cannot approach nearer to equality than by

that given difference J), which is against the suppo-

sition." *

The above demonstration is thus given by Dr.

^Vhewell, " Prop. I. (Newton, Lemma I.)

:

" Two quantities ^vhich constantly tend towards

equality while the hypothesis approaches its ultimate

form, and of which the difference, in the course of

approach, becomes less than any finite magnitude, are

ultimately equal."

"The two quantities must either be ultimately equal,

or else ultimately differ by a finite magnitude. If

they are not ultimately equal,, let them ultimately have

for their difference the finite magnitude D. But by

supposition, as the hypotliesis approaches its ultimate

form, the differences of the two magnitudes become

less than any finite magnitude, and therefore less than

the finite magnitude D. Therefore D is not the ulti-

mate difference of the quantities. Therefore they are

not ultimately unequal. Therefore they are ultimately

equal." t

* Principia, Book I., Scclion I., Lemma I.

f Doctiiiie of Limits, Eools II.
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In the two following lemmas Newton proceeds to

give particular instances or illustrations of the import

of the above general proposition. As these are neces-

sary to render his meaning plain, they are here added

:

LEMMA II.

"If in any figure A a e E, terminated by the rigid lines

A a, A E, and the curve

a c E, there he inscribed any

number of parallelograms,

Ab,^c, Cd, etc., compre-

hended under equal bases

A B, B C, CD, etc., and

the sides Jib,Cc,T)d, etc.,

parallel to one side A a of

the figure, and the parallelo-

grams a^ b I, 6 L c m,

cM.dn, etc., are completed.

Then if the breadth of those

parallelograms be supposed to be diminished, and iludr

number to be augmented in infinitum ; I say that the

ultimate ratios which the inscribedfigure AK 6 Ij cM d D,

the circumso'ibed figure Aalb m cndolE, and curvi-

linear figure Aabcd^, will have to one another, are

ratios of equality.

" For the difference of tlie inscribed and circumscribed

figures is the sum of the parallelograms K I, L m, M n,

D 0, that is (from the equality of all their bases), the

rectangle under one of their bases K 6, and the sura

of their altitudes A a, that is, the rectangle A B ? a.

But this rectangle, because its breadth A B is sup-

posed diminished in infinitum, becomes less than any

given^^ace. Aud therefore (by Lem. I.) tlie figure
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inscribed and circumscribed become ultimately equal

one to the other, and much more will the intermediate

curvilinear; figure be ultimately equal to either, q. e. d."

(L^^./
-6

77Z-

71/

M

LEMMA III.

" Tlie same ultimate ratios are also ratios of equality,

when the breadths A B, B C, D C, etc., of the parallelo-

grams are unequal, and are all diminished in infinitum.

" For suppose A F equal to the greatest breadth, and

complete the parallelogram

FA a/. This parallelo-

gram will be greater than

the difference of the in-

scribed and cireunjscribed

figures ; but, because its

breadth A F is diminished

in infinitum, it will become

less than any given rect-

angle. Q. E. D.

"Cor. 1. Hence the ul-

timate sum of those evanes-

cent parallelograms will in all parts coincide with the

curvilinear figure.

" CoE. 2. Much more will the rectilinear figure com-

prehended under the chords of the evanescent arcs

ab, b e, c d, etc., ultimately coincide with the curvi-

linear figure.

"CoE. 3. And also the circumscribed rectilinear

figure comprehended under the tangents of the same

arcs.

"CoE. 4. And therefore these ultimate figures (as to

their 2:)erimeters a c E), are not rectilinear, but curvi-

linear limits of rectilinear figures."

15 »

BF
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In these celebrated demonstrations, as well as in

those which follow, there are very great obscurities

and difficulties. The objections to them appear abso-

lutely insuperable. How, for example, can the cir-

cumscribed figures in lemmas two and three ever be-

come equal to the curvilinear space A a E? If these

spaces should ever become equal, then the line Albm
cndoE would necessarily coincide with the curve

A 6 c rf E, which seems utterly impossible, since a

broken line whose sides always make right angles with

each other cannot coincide with a curve line. I should

not, indeed, believe that the author of the Principia

contemplated such a coincidence, if his express words,

as well as the validity of his demonstration, did not

require me to believe it; that is, if he had not expressly

said in the first corollary, that "the ultimate sura

of these evanescent parallelograms will in all parts

coincide with the curvilinear figure." The supposi-

tion of such a coincidence, even if it were conceivable,

leads to an absurdity. For the sum of the horizontal

lines al,b m, c n, d o, or however far their number

may be augmented, will always -be equal to the line

A E, and the sum of the corresponding vertical lines

lb,m,G,nd,o~K, etc., will always be equal to the line

A a. Hence, if the two figures should ultimately co-

incide, then the line Albmondo^, qx its equal

A 6 c c? E, would be equal to the sum of the two lines,

AE and Art. Or, if the curvilinear space AaE
were the quadrant of a circle, then one-fourth of its

circumference would be equal to the sum of the two

radii A E and A a, or to the diameter, which is im-

possible. Or, again, if the line a 6 c cZ E were a straight

line, it might be proved by the same reasoning that
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the hypothenuse of the right-angled triangle A a E
is equal to the sum of its other two sides, which is a

manifest absurdity.

The truth is, that the sum of the circumscribed or

of the inscribed parallelograms will never become

equal to the curvilinear figure. No possible increase

of the number of parallelograms can ever reduce their

sum to an equality with the curvilinear space. What,

then, shall we say to the above demonstrations ? Or

rather to the demonstration of the first lemma, on

which all the others depend ? I do not know that any

one has ever directly assailed this demonstration ; but,

unless I am very grievously mistaken, its inherent

fallacy may be rendered perfectly obvious. It may

be refuted, not only by the reductio ad absurdum, or

by showing the false conclusions to which it necessarily

leads, but by pointing out the inherent defect of its

logic.

The attempt is made to prove that the sum of the

circumscribed parallelograms will ultimately become

equal to the sum of the inscribed parallelograms.

Now it is evident that the difference of these sums is

a variable quantity which may be made as small as

we please. This is, indeed, one of the suppositions

of the case ; the circumscribed and the inscribed figures

are supposed to vary continually, and to " approach

nearer the one to the other than by any given differ-

ence." Of course, then, they can by this hypothesis

be made to " approach nearer to equality than by the

given difference D." If you deny the two variable

figures to be ultimately equal, says the demonstrator,

" suppose them to be ultimately unequal, or let D be

their ultimate difference. Therefore they cannot ap-
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proach nearer to equality than by that difference D,

which is against the supposition." True. If the

difference be supposed to be variable, and then sup-

posed to be constant, the one supposition will, of

course, be against the other. If the difference in

question be a variable, which may be rendered less

than any given difference, then, of course, it may be

rendered less than the constant quantity D. Hence,

to suppose its ultimate value equal to D, is to contradict

the first supposition or hypothesis. Indeed, according

to that hypothesis, the difference in question has no

ultimate or fixed value whatever. It is, on the con-

trary, always a variable, and its limit is not D, nor

any other magnitude but zero. To say, then, that its

ultimate value is equal to the constant quantity D, is

clearly to contradict the supposition that it is always

a variable which may be made to approach as near as

we please to zero. But is not that a very precarious

and unsatisfactory sort of demonstration wiiich sets

out with two contradictory suppositions, and then con-

cludes by showing that the one supposition contradicts

the other?

Let us apply this sort of demonstration to another

case; If a quantity be reduced, by repeated opera-

tions, to one-half of its former value, its successive

values may be represented by 1, J, ^, |, and so on,

ad infinitum,. By repeating the process sufficiently far,

it may be made less than any given quantity, or it

may be made to approach as near as we please to zero.

But will it ever become zero or nothing? Is the half

of something, no matter how small, ever exactly equal

to nothing? No one will answer this question in tlie

affirmative. -And yet, if the above reasoning be cor-
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rect, it may be demonstrated that a quantity may be

divided until its half becomes equal to nothing. For,

by repeating the process ad libitum, it may be supposed

to " approach nearer to zero than by a given differ-

ence." Henqe it will ultimately become equal to zero.

" If you deny it, suppose it be ultimately unequal

[to zero], and let D be its ultimate difference [from

zero]. Therefore it cannot approach nearer to equality

[with zero] than by the given difference D, which is

against the supposition." But if it be not unequal, it

nmst be equal to zero or nothing. That is, the ulti-

mate half of something is exactly equal to nothing

;

Q. E. D.

In his first attack on the reasoning of Sir Isaac

Newton, contained in " The Analyst," Bishop Berkeley

did not notice the above demonstration of the first

lemma of the first book of the Principia. Jurin, his

antagonist, complained of this neglect, and Berkeley

replied :
" As for the above-mentioned lemma, which

you refer to, and which you wish I had consulted

sooner, both for my own sake and for yours, I tell you

I had long since consulted and considered it. But I

very much doubt whether you have sufficiently con-

sidered that lemma, its demonstration, and its conse-

quences." He then proceeds to point out one of these

consequences, which seems absolutely fatal to Sir

Isaac Newton's view of his own method. " For a

fluxionist," says he, " writing about momentums, to

argue that quantities must be equal because they Iiave no

assignable difference, seems the most injudicious step

that could be taken ; it is directly demolishing the very

doctrine you would defend. For it will thence follow

that all liomogeneous momentums are equal, and eon-
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sequently the velocities, mutations, or fluxions', propor-

tional thereto, are likewise equal. There is, therefore,

only one proportion of equality throughout, which at

once overthrows the whole system you undertake to

defend."* This objection appears absolutely unan-

swerable. For if all quantities, which "during any

finite time constantly approach each other, and before

the end of that time approach nearer than any given

difference, are ultimately equal," then are all indefi-

nitely small quantities ultimately equal, since they all

approach each other in value according to the hypothe-

sis. That is to say, as zero is the common limit toward

which they all continually converge, so they continu-

ally converge toward each other, and may be made to

" approach nearer the one to the other than by any

given difference." If, then, it follows from this that

they are all " ultimately equal," " there is only one

proportion of equality throughout," and the whole

fabric of the infinitesimal analysis tumbles to the

ground. For this fabric results from the fact that, in-

stead of one uniform proportion, there is an infinite

variety of ratios among indefinitely small quantities.

If these were ultimately equal, then their ultimate ratio

would always be equal to unity. But instead of

always tending toward unity, the ratio of two indefi-

nitely small quantities may, as every mathematician

knows, tend toward any value between the extreme

limits zero and infinity.

The objections of Berkeley, not to the method of

Newton, but to Newton's view or exposition of his

method, have never been satisfactorily- answered.
" The Analyst was answered by Jurin," says Playfair,

» A Defence of Free Thinking in Mathematifis, XXXII.
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" under the signature of PJdlalethes Gantabrigiends,

and to tliis Berkeley replied in a tract entitled A De-

fence of Free Thinking in Mathematics. Replies were

again made to this, so that the argument assumed the

form of a regular controversy ; in which, though the

defenders of the calculus had the advantage, it must

be acknowledged that they did not always argue the

matter qnite fairly, nor exactly meet the reasoning of

their adversary." * This is the judgment of the ma-

thematician, not of the historian or the philosopher.

No one, it seems to me, ever argued any question of

science more intemperately or more unfairly than

Jurin did in his reply to Berkeley. But it is not my
design to enter, at present, into the merits of this con-

troversy. I merely wish to quote Berkeley's experi-

ence among men, which so nearly coincides with my
own among books. " Believe me, sir," said he to

Philalethes, " I had long and maturely considered the

principles of the modern analysis before I ventured to

publish my thoughts thereupon in the Analyst. And,

since the publication thereof, I have myself freely con-

versed with mathematicians of all ranks, and some of

the ablest professors, as well as made it my business

to be informed of the opinions of others, being very

desirous to hear what could be said towards clearing

my difficulties or answering my objections. But

though you are not afraid or ashamed to represent the

analysts as very clear and uniform in their conception

of these matters, yet I do solemnly affirm (and several

of themselves know it to be true) that I found no har-

mony or agreement among them, but the reverse thereof,

the greatest dissonance and even contrariety of opinions,

» Proii;i-ess of Itfathematioal and Physical Science, Fart II., Sec. 1.
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employed to explain what after all seemed inexplicable.

Some fly to proportions between nothings. Some reject

quantities because infinitesimal. Others allow only

finite quantities, and reject them because inconsider-

able. Others place the method of fluxions on a footing

with that of ezIiausUon, and admit nothing new therein.

Some maintain the clear conception of fluxions. Others

hold they can demonstrate about things incomprehen-

sible. Some would prove the algorithm of fluxions by

reductio ad absurdum, others a priori. Some hold the

evanescent increments to be real quantities, some to be

nothings, some to be limits. As many men, as many
minds ; each diifering from one another, and all from

Sir Isaac Newton. Some plead inaccurate expressions

in the great author, M'hereby they would draw him to

speak their sense ; not considering that if he meant as

they do, he could not want words to express his mean-

ing. Others are magisterial and positive, say they are

satisfied, and that is all; not considering that we, who
deny Sir Isaac Newton's authority, shall not submit

to that of his disciples. Some insist that the conclu-

sions are true, and therefore the principles, not con-

sidering what hath been largely said in the Analyst

on that head. Lastly, several (and these jione of the

meanest) frankly owned the objections to be unan-

swerable. All which I mention by way of antidote

to your false colors, and that the unprejudiced inquirer

after truth may see it is not without foundation that

I call on the celebrated mathematicians of the present

age to clear up these obscure analytics, and concur in

giving to the public some consistent and intelligible

account of their great master, which-, if they do not, I
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believe the world will take it for granted that they

cannot." *

More than one champion entered the lists against

Berkeley. Besides Philalethes Cantabr-igiensis, or Jurin,

another eminent mathematician, Mr. Bobins, pub-

lished replies to both of the papers of the celebrated

Bishop of Cloyne. But, unfortunately, in attempting

to re-demonstrate the demonstrations of Newton, and

clear away every obscurity from his method, the two

disciples, instead of demolishing Berkeley, got into an

animated controversy about the meaning of the great

master. Newton, as understood by Jurin, was utterly

unintelligible or false in the estimation of Robins, and,

as interpreted by Robins, he was vehemently repudi-

ated by Jurin. Now this disagreement respecting the

true interpretation of Newton's interpretation of his

own method is well stated by Mr. Robins.

" It was urged," says he, " that the quantities or

ratios, asserted in this method to be ultimately equal,

were frequently such as could never absolutely coin-

cide. As, for instance, the ijarallelograms inscribed

within the curve, in the second lemma of the first book

of Sir Isaae Newton's Priiwipia, cannot by any divi-

sion be made equal to the curvilinear space they are

inscribed in, whereas in that lemma it is asserted that

they are ultimately equal to that space."

" Here," says he, " two different methods of expla-

nation have been given. The first, supposing that by

ultimate equality a real assignable coincidence is in-

tended, asserts that these parallelograms and the curvi-

linear space do become actually, perfectly, and abso-

lutely equal to each other." This was the view of

* A Defence of Free Thinking in Mathematics, XLIII. and XLIV.
16
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Jurin, and it seems diiEcult to understand how any

man could arrive at any other conclusion. Newton

himself, as we have seen, expressly asserts that the

"parallelograms will in all parts coincide with the

curvilinear figure." But Mr. Robins, in his explana-

tion, understands Newton to mean that they will not

coincide. Newton asserts, apparently as plainly as

language could enable him to do so, " the coincidence

of the variable quantity and its limits," and yet the

disciple denies, in the name of the master, the reality

of any such coincidence. Newton declares that the

variable becomes " ultimately equal" to its limit, and

yet Mr. Eobins insists that he must have seen they

would always remain unequal. Now is this to inter-

pret, or simply to contradict. Sir Isaac Newton's ex-

planation of his own method ? No one could possibly

entertain a doubt respecting the meaning of Mr,

Robins. If Newton had meant unequal, could he not

have said so just as well as Mr. Robins, instead cf

saying equal ? Or, if he did not believe in " the coin-

cidence of the variable and its limit," could he not

have denied that coincidence just as clearly as he has

asserted it ? It is certain that from Jurin to Whe-
well, and from Whewell to the present mathematicians

of Cambridge, Newton has generally been understood

to contend for an ultimate equality between the vari-

able quantity and its limit. Thus, in expounding the

doctrine of Newton, which he adopts as his own, Dr.

Whewell says : "A magnitude is said to be ultimately

equal to its limit, and the two are said to be ultimately

in a ratio of equality. A liae or figure ultimately coin-

cides with the line or figure which is its limit." * The
» Doctrine of Limits, Book II., Dcfiuitions and Axioms.
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same view, as we have already seen, is also taken by

Mr. Todhunter in his Differential Calculus. It is, in

fact, the doctrine and the teaching of Cambridge to the

present hour, in spite of all the obscurities, difficulties,

doubts, and objections by which it has never ceased

to be surrounded, to say nothing of the demonstrations

by which it may be refuted.

The views of Mr. Robins respecting the method of

limits appear perfectly just, as far as they go; yet

nothing, it seems to me, could be more ineffectual than

his attemjjt to deduce these views from the Prineipia.

The author of that treatise, says he, " has given such

an interpretation of this method as did no ways re-

quire any such coincidence [between the ultimate form

of the variable and its limit]. In his explication of

this doctrine of prime and ultimate ratios he defines

the ultimate magnitude of any varying quantity to be

the limit of that varying quantity which it can ap-

proach within any degree of nearness, and yet can

never pass. And in like manner the ultimate ratio

of any varying ratio is the limit of that varying

ratio." * Now this fails to make out his case. For

the " ultimate magnitude of any varying quantity" is

one of the magnitudes of that quantity, and if that

magnitude is its limit, then the varying quantity

reaches its limit. Nor is this all. Mr. Robins has

suppressed an important clause in the definition of

Newton. Newton says: " These ultimate ratios with

which quantities vanish are not truly the ratios of

ultimate quantities, but limits towards which the ratios

of quantities decreasing without limit do always eon-

verge, and to which they approach nearer than by any

« Review of Objections to the Doctrine of Ultimate Proportions.
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given difference, but never go beyond, nor in ej

attain to, till the quantities are diminished in infinitum." *

Now here, in the definition of Newton as given by

himself, it is said, that the varying quantity in its

ultimate form attains to its limit. It was reserved

for a later age to establish the truth, that a varying

quantity is never equal to, or coincides with, its limit;

a truth which, as we shall presently see, dispels all

the obscurities of Newton's method, and places that

method on a clear, logical, and immutable basis.

It is, indeed, exceedingly difficult to believe that

Newton intended, by his demonstration, to establish

an ultimate equality or coincidence between the paral-

lelograms and curvilinear spaces of Lemmas II. and

III. ; because such an equality or coincidence seems so

utterly impossible. This was the great difficulty with

Mr. Robins; rather than believe such a thing of New-

ton, he would explain away the obvious sense of liis

most explicit statements. But even at the present day,

after two centuries of progress in the development of

the calculus and in the perfecting of its, principles, the

demonstration of the- same paradox is frequently at-

tempted by mathematicians of the highest rank.

This demonstration is worthy of examination, not only

on its own account, but also on account of the light

which it throws on the operations of Newton's mind,

as well as on several passages in the Prinoipia. The

demonstration to which I refer is usually found in the

attempt to obtain a general expression or formula for

the differential of a plane area. It is thus given in a

very able and learned work on the Differential and

Integral Calculus:

* Principia, Book II., Section I., Scholium.
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" Prop. To obtain a general formula for the value

of the plane A B C D, included between the curve

D C, the axis O X, and the two parallel ordinates

A D and B.C, the curve being referred to rectanglar

co-ordinates.

"Put O E= a;, E P = 2/, E F = /*, F P' = y', and

tfie area A E P D = A.

E F

"Then when x receives an increment h, the area

takes the corresponding increment E P P' F, interme-

diate in value between the rectangle F P and the rect-

angle F S. But

y

QFS.
DFP'

1.2

yyXh

dx y \dx'y

= 1, when7t= 0.

Hence at the limit, when' h is indefinitely small, the

area E P P' F, which is always intermediate in value

between F P and F S, must become equal to each of

these rectangles or equal to y X h.

16 «
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-• . d k.^y dx, and consequently K=^Jydx, the

required formula." *

That is, the variable rectangles F P, F S, and the

intermediate curvilinear space F E P P', are ultimately

equal, or the ultimate ratio of any one of. them to the

other is equal to unity. As the same thing is true of

all similar parallelograms and ,the intermediate curvi-

linear space, so the sum of these parallelograms or

rectangles is equal to the curvilinear space A B C D,

whose value is sought. Hence A =/y da;, the sura

of all the inscribed rectangles, such as E F R P. Thus

'it is demonstrated, as the author imagines, that the

curvilinear space A B C D is equal to, or made up of,

all the indefinitely small inscribed or circumscribed

rectangles, such as F P. But let us look at this de-

monstration, which is to be found in so many.works

on the calculus, and examine the mysteries of its

mechanism.

It is evident, in the first place, from the analytical

reasoning of the author, as well as from an inspection

of the figure, that the two rectangles never, become

equal until h, or their common base, is reduced to 0.

That is to say, they never become equal as long as

they are rectangles ; but continue unequal until they

vanish as rectangles, and become identical with their

common limit, the right line E P. The curvilinear space

F E P P' becomes, at the same time, equal to and, of

course, identical with the same line E P. For as long

as the rectangles exist as such, or as long as h has

any value greater than zero, the ratio of F S divided

by F P is not = 1, but to

* Courtenay's Calculus, p. 330.
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^^dy n 6^ JL . etc

and this ratio becomes == 1 only when all three areas

vanish, or become identical with the right line F P,

in consequence of making h = 0. Hence, instead of

proving that the rectangle F S is ever equal to the

I—^ F S
rectangle F P, so that = 1, the author has only

proved that the right line F P is equal to itself,

F P
F P, so that —— = 1 ; a proposition which surely

needed no proof.

But see how adroitly the reasoning is managed.
" Hence at the limit," says the author, " when h is

indefinitely small, the area E P P' F, which is always

intermediate in value between F P and F S, must be-

come equal to each of these rectangles." Not at all.

It is only when /t=0, as we have just seen in the

preceding line, that the three areas vanish and become

equal to the right line F P. Thus h is made =: 0, in

order to prove that the rectangles F S and F P are

equal to each other, and to the curvilinear space

F E P P'. But how will you take the sum of such

rectangles ? How will you take the sum of rectangles

whose variable altitude is y, and whose base is 0?

Or, in other words, how will you take the sum of

right lines so as to make up an area? The truth is,

as we have seen, that as,/* becomes smaller and smaller,

the rectangles, such as F S and F P, become less and

less in size, and greater and greater in number. Hence

at the limit, when h = 0, the rectangles vanish into

right lines, and the number of these lines becomes
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= 00 . To take the sum of such rectangles, then, is

only to take the sum of right lines, which throws us

back two centuries, and buries us in the everlasting

quagmire of the method of indivisibles.

But the author escapes this difficulty. He makes

"/j ^ 0" in one line, or absolutely nothing, so that all

quantities multiplied by it vanish, and, in the very

next line, he makes li equal to an " indefinitely small"

quantity. This very convenient ambiguity is, indeed,

the logical artifice by which the difficulties of the cal-

culus are usually dodged. In order to evade these

difficulties nothing is more common, in fact, than to

make 1i = on one side of an equation, and, at the

same time, to make it an " indefinitely small quantity"

on the other side of the same equation. The calculus

before us, as well as some others, is really replete

with sophisms proceeding from the same prolific am-

biguity.

This ambiguity in the ultimate value of /t, or in the

method of passing to the limit of the rectangles in

question, is i)atent and palpable in the above demon-

stration. It is latent and concealed in the demonstra-

tion of Newton. Neither he, nor Cavalieri, nor Robins,

nor Courtenay, nor any other man, could be made to

believe or imagine that the sum of any inscribed paral-

lelogram whatever could be equal to the circum-

scribed curvilinear space, unless some such ambiguity,

either hidden or expressed, had first obscured the

clearness of his mental vision. It is evident, indeed,

from the language of Newton himself, that he failed,

in tlie demonstration of his lemmas, to effect an escape

from the conception of indivisibles. It was to effect

such an escape, as he tells us, that he demonstrated
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the lemmas in question, "because the hypothesis of

indivisibles seems somewhat harsh." * But, after all,

it is clear, upon close scrutiny, that his escape from

that hypothesis was far from perfect. Thus, in the

fourth corollary to the third lemma, he tells us, that

" these ultimate figures (as to their perimeters a c E)

are not rectilinear, but curvilinear limits of rectilinear

figures." That is to say, the ultimate form of the

"evanescent parallelograms" (Cor. 1), or of the in-

scribed polygon (Cor. 2), or of the circumscribed poly-

gon (Cor. 3), is not a rectilinear figure, but " the curvi-

linear limit" of such a figure. Now, how can the

ultimate form of a polygon be "a curvilinear limit"

or figure. It becomes so, says Newton, when the sides

of the polygon are " diminished in mfinitum." But,

surely, as long as its sides remain right lines it does

not become a curvilinear figure. It is only when its

sides have been " diminished in infinitum," or ceased to

be right lines, that the polygon can be conceived as

coincident with a curvilinear figure. But is not tliis

to divide the sides, or to conceive them to be divided,

until they can no longer be divided ? Is not this, in

other words, to fall back on the conception ofindivisibles

— on the "somewhat harsh hypothesis" of Cavalieri?

And has not the author of the Prinoipia, in spite of

his efforts, failed to extricate his feet at least from the

entanglements of that method? Indeed, it seems

utterly impossible for the human mind to escape from

that method until it abandons the false principle, and

the false demonstrations of the principle, that parallelo-

grams, or polygons, or any other rectilinear figures

whatever, can, by any continual division and subdi-

* Principia, Book I., Section I., Scholium.
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vision, be made to coincide with a curvilinear space.

The thing itself is imi^ossible, and can only be con-

ceived by means of " the absurd hypothesis" of indi-

visibles, as it is called by Carnot.

It is generally, if not universally, asserted by

writers on the theory of the calculus, that the method

of limits is free from the logical fault of a compensa-

tion of errors ; in which respect it is supposed to pos-

sess a decided advantage over the method of Leibnitz.

But this is far from being always the case. If, for

example, we suppose with Sir Isaac Newton, or with

Mr. Courtenay, that the inscribed rectangle, the cir-

cumscribed rectangle, and the intermediate curvilinear

space are ultimately equal to each other, we can, in

many cases, reach an exact conclusion only by means

of a compensation of errors. In order to show this,

let us resume the above general formula : A ^fydx,
which signifies that the curvilinear area A is equal to

the sum of all the ultimate rectangles ydx. Now,
for the sake of clearness, let us apply this formula to

the parabolic area O B C, whose vertex corresponds

Y
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the figure. Now it is evident that the sum of these

rectangles is greater than the parabolic area O B C,

and will continue to be greater, however their number

may be increased or their size diminished, provided

only that they do not cease to be rectangles. The
measure of one of these rectangles in its last form is

measured, as we have seen, by y d x, and the whole

area O B C, supposed equal to the sum of these rect-

angles, is Jy dx. Now this sum, or fy dx, is, I say,

greater than the parabolic area in question. This may
be easily shown.

From the equation of the parabola y^ = 2p x, wo

obtain, by differentiation, y'^ -\- 2y d y -\- dy'' = 2p x

j- 2pdx, or 2y dy -\- dy''^^ 2pdx. Hence

p 2p

By substituting this value of d x in the above formula,

we have the area of

OBC,orA=j(^ +^\
Now this is the exact value of the sum of all the in-

definitely small circumscribed rectangles. But it is

greater than the parabolic area OBC; for the first

/v^ d v
-—-, is exactly equal to that area.

J?/

fl 7/ 7/^ ji Yi 1" 1/ Zi
'-—- --"^ = —i—- = - X y, the well-known
p 3p 3p 3

^'

value of the parabolic area OBC.
Now the sum of the parallelograms was made up of

/It d If /^vd v^
-—- and of I

-——. The
p J 2p
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first part alone, C-—- , is exactly equal to the area

O B C ; and, consequently, the part C^-—^, which was
J 2p

thrown away, must have been exactly equal to the

sum of the little mixtilinear triangles O ab, bod,

d ef, etc., by which the sum of the rectangles exceeded

the area of O B C. Hence the exact result O B C=
2
- xy, was obtained by a compensation of errors ; the
o
excess of the sum of the rectangles over the area of

O B C being corrected by the rejection of (
~——

J 2p
as nothing. Thus, the method of Newton is not always

free from a secret compensation of errors; a logical

defect which has always been supposed to be exclu-

sively confined to the method of Leibnitz.

The reason of this is, that Newton frequently mixed

up the fundamental conceptions of Leibnitz with his

own clearer principles, and, consequently, failed to

emancipate his method from their darkening influence.

This is evident from the case above considered. In

the method of Leibnitz it is taken for granted that the

rectangle F E P R [Fig. p. 185] may be taken for the

curvilinear space F E P P' ; because they differ from

each other only by the infinitely small quantity P P' R,

which makes really no difference at all. This is, iu

fact, one of the equalities which is specified in the first

postulate of the Marquis de L'H6pital, as we saw

in the last chapter of these reflections. Newton does

not take this equality for granted, but he attempts to

demonstrate it. But no reasoning can ever prove that
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the rectangle F P, however small, is equal to the

curvilinear space F E P P'; even Newton, as we have

seen, failed in his attempt to demonstrate such an im-

possibility. Leibnitz should have said, I commit a

small error in the formation of my equation by taking

F P for F E P P'; but then I will correct this error

by rejecting from my equation certain small quantities

;

for this is, in fact, precisely what he did. Newton, in

like manner, should have said, I put F P in the place

of F E P P', not because they are equal, or can ever

become so, but because they have the same limit ; and,

consequently, in passing t« the limit, the same precise

result will be obtained whether the one quantity or

the other be used ; for this is exactly what he did.

But, instead of saying so, or confining their language

to the real processes of their methods, both proceeded

on the false conception that the infinitely small rect-

angle F P is exactly equal to the curvilinear space

F E P P'. The only difference between them was,

that Leibnitz predicated this equality of the two

figures when they were infinitely small, and Newton

when they had reached their ultimate form or value.

Hence in the one system, as in the other, the dxact

result was obtained by means of an unsuspected com-

pensation of unsuspected errors.

Again, Sir Isaac Newton wished to avoid, as much

as possible, the use of infinitely small quantities in

geometry. " There were some," says Maclaurin, " who
disliked the making much use of infinites and infi-

nitesimals in geometry. Of this number was Sir Isaac

Newton (whose caution was as distinguishing a part

of his character as his invention), especially after he

saw that this liberty was growing to so great a

17
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height." * Maclaurin himself entertained the opinion

that " the supposition of an infinitely little magnitude"

is " too bold a postulatum for such a science as geome-

try," f and hence he commends the caution of Newton

in abstaining from the use of such quantities. Indeed,

Newton himself says, " Since we have no ideas of infi-

nitely little quantities, he introduced fluxions, that he

might proceed by finite quantities as much as possi-

ble." J But while he clung to the hypothesis, or

notion, that the variable ultimately coincides with its

limit, he found it impossible to avoid the use of such

quantities, or else something even more obscure and

unintelligible. Thus, as we have seen, he divided the

sides of his inscribed and circumscribed variable poly-

gons until he made them coincide with the limiting

curve. Now, did not this make their sides infinitely

small, or something less ? Did it not, in fact, reduce

them to indivisibles or to points ? And if so, did not

their length become infinitely small before it became

nothing?

Nor is this all. For he says, " Perhaps it may be

objected that there is no ultimate proportion of evan-

escent quantities, because the proportion' before the

qualities have vanished is not ultimate, and when

they are vanished, is none. But by the same argu-

ment, it may be alleged, that a body arriving at a

place, and then stopping, has no ultimate velocity,

because the velocity, before the body comes to the

place, is not ultimate; when it has arrived, is none,

» Introduction to Maclaurin's Fluxions, p. 2.

f Preface to Fluxions, p. iv.

% Philosophical Transactions, No. 342, p. 205 ; Robins' Mathelna.ti-

cal Tracts, Vol. II., p. 86.
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But the answer is easy, for by the ultimate velocity is

meant that with which the body is moved, neither

before it arrives at its last place and the motion ceases,

nor after, but at the very instant it arrives ; that- is,

that velocity with which the body arrives at its last

place and with which the motion ceases. And in like

manner, by the ultimate ratio of evanescent quantities

is to be understood the ratio of the quantities not

before they vanish, nor afterwards, but with which

.

they vanish. In like manner the first ratio of nascent

quantities is that with which they begin to be. And
the first or last sura is that with which they begin or

cease to be (or to be augmented or diminished). There

is a limit which the velocity at the end of the motion

may attain, but not exceed. This is the ultimate

velocity. And there is the like limit in all quantities

and proportions that begin and cease to be." * Thus,

the ultimate ratio ofquantities, as considered by Newton,

is the ratio, not of quantities before they have vanished,

nor after they have vanished, but of somethings some-

where between something and nothing. These some-

things, which exist somewhere in that intermediate

state, is what Bishop Berkeley has ventured to call

"the ghosts of departed quantities." The ultimate

ratio of two rectangles^ for example, is their ratio,

neither before nor after they have ceased to be rect-

angles, but while they are somewhere and something

between rectangles and right lines. There may be,

if you please, such things as such ultimate velocities

or departed quantities. But, if introduced into the

domain of mathematical science, will they not bring

with them more of obscurity than of light?

* Principia, Book I., Section I., Scholium.
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" D'Alembert," says Carnot, " rejected this explica-

tion, though he completely adopted in other respects

the doctrine of Newton concerning the limits or iirst

and last ratios of quantities." * And Lagrange said,

"That method has the great inconvenience of con-

sidering quantities in the state in which they cease, so

to speak, to be quantities ; for though we can always

well conceive the ratio of two quantities, as long as

they remain finite, that ratio offers to the mind no

clear and precise idea, as soon as its terms become the

one and the other nothing at the same time." It may

be doubted, then, whether Newton gained anything in

clearness and precision by the rejection of infinitely

small quantities, and the invention of ultimate ones.

In order to take a complete view of Newton's

method, it will be necessary to consider a few more

of his lemmas, and also the object for which such dark

and difficult things are demonstrated. I shall, then,

begin with

LEMMA IV.

" If in two figures A a e E, Vp r T, you inscribe

(as before) two ranks of parallelograms, an equal num-

ber in each rank, and when their breadths are dimin-

ished in infinitum, the ultimate ratios of the parallelo-

f Metaphysique, etc., Chap. III., p. 182.
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grams in one figure to those in the other, each to each

respectively, are tlie same ; I say, that these two figures

A a c E, P
J)

r T, are to one another in tliat same ratio.

" For as the parallelograms in the one are severally

to the parallelograms in the other, so (by composition)

is the sum of all in the one to the sura of all in the

other, and so the one figure to the other ; because (by

Lemma III.) the former figure to the former sura,

and the latter figure to the latter sura, are both in the

ratio of equality. Q. E. T>."

Now this demonstration, it will be perceived, pro-

ceeds on the principle that the inscribed parallelo-

grams exactly coincide with the circumscribed curvi-

linear figure, and if this coincidence were not perfect

then the demonstration would be defective. This

proposition alone is, then, sufficient to show that New-
ton contended for what his words so clearly express;

namely, that the inscribed parallelograms, in their

ultimate form, really and rigidly coincide with the

circumscribed figure. This may be very difficult to

believe, but it is, nevertheless, absolutely demanded

by his demonstration of the fourth lemraa, as well as

by his express words. Perhaps such a thing could

not have been believed by any one previously to the in-

troduction of indivisibles, and the darkness which the

overstrained notions of that raethod introduced into

the minds of the mathematical world. It is certain

that if Euclid or Archimedes could have believed in

such a coincidence between rectilinear and curvilinear

figures, they would have had no occasion to abandon

the principle of supposition, and invent or adopt the

method of exiiaustion in order to ascertain the measure

of curvilinear areas.

17*
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I have, it may be remembered, demonstrated in a

perfectly clear and unexceptional manner a proposi-

tion similar to the above lemma, without supposing the

variable to reach or coincide with its limit. That is

to say, I liave shown that if two variables always

have the same ratio to each other, then, although they

never reach their limits, yet will these limits be in the

same ratio. This proposition, which entirely eschews

and shuns the strained notion that a variable ulti-

mately coincides with its limit, will be found to answer

all the purposes of the fourth lemma of Newton. Even

if that strained notion were true, and could be demon-

strated, it would add nothing but a very unnecessary

obscurity to the demonstrations of the method of

limits. But Newton, as we have seen, has failed to

demonstrate that strained notion, that first and funda-

mental conception of his method. In his attempt to

do so he has, as we have seen, only shown a contra-

diction between two contradictory suppositions. That

conception should, then, it seems to me, be for ever

banished from the domain of mathematical science, as

having perplexed, darkened, and confounded the other-

wise transcendently beautiful method of limits.

LEMMA VI.*

" If any arc A C B, given in position is subtended

by its chord A B, and in any point A, in the middle

of the continued curvature, is touched by a right line

* The fifth lemma !s in these words : "In similar figures, all sorts

of homologous sides, whether curvilinear or rectilinear, are propor-

tional, and the areas are in the duplicate ratio of the homologous

sides." It is without a demonstration; a simple enunciation is all

that the author deemed necessary.
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A D, produced both ways ; then if the points A and

B approach one another

and meet, I say, the angle

BAD, contained between

the chord and the tangent,

will be diminished in infi-

nitum, and will ultimately

vanish.

" For if the angle does

not vanish, the arc A C B
will contain with the tan-

gent A D an angle equal to a rectilinear angle, and

therefore the curvature at the point A will not be con-

tinued, which is against the supposition."

Now this demonstration is merely preliminary to

those which follow. The seventh lemma is in these

words :
" The same things being supposed, I say that

the ultimate ratio of the arc, chord, and tangent, any

one to any other, is the ratio of equality." Now this

proposition is demonstrated in order to establish the

practical conclusion, that " in all our reasoning about

ultimate ratios, we may freely use any one of these

lines for any other." [See Cor. III.]

LEMMA VIII.

" If the right lines A E, B E, with the arc A C B,

the chord A B, and the tangent A D, constitute three

triangles E A B, E A C B, E A D, and the point A
and B approach and meet ; I say that the ultimate

form of these evanescent triangles is that of similitude,

and their ultimate ratio that of equality." Now this

lemma is demonstrated, like the last, to establish the

conclusion, that " in all our reasonings about ultimate
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ratios we may indifferently use any one of these tri-

angles for any other." [See Cor.] That is to say,

it is concluded that any one of these triangles may
be used for any other ; because it has been demon-

strated that they are " ultimately both similar and

equal among themselves."

In this eighth lemma the " ultimate form" of these

several " triangles" is in a single point. Now what,

I would ask, is Jliis "ultimate form?" Perhaps it is

no form at all; perhaps it is without form and void.

It is certainly contained in a point which has neither

length, breadth, nor thickness. It is not the form of

a triangle, for if it were, it would then be a triangle,

and could not be inscribed in a point. Or, if it were

the form of a triangle, it would then be a triangle that

had not vanished, which is contrary to the very defi-

nition of an " ultimate triangle." Nor is it the form

of a triangle after it has vanished, for then it is nothing,

and has no form. What, then, is this "ultimate

form" of a triangle ? It is not, we are told, a triangle

either before or after it has vanished, but while it is

in the act of vanishing. With what form, then, does

a triangle vanish ? Certainly not with the form of a

triangle, for then it would still be a triangle, which is

contrary to the definition. Nor with tlie form of a

point, for then it has ceased to be a triangle, which is

likewise contrary to the definition. Must I conclude,

then, that this " ultimate form" is some unknown

form between that of a triangle and a point ? It is

certain that I can no more conceive of " this ultimate

form of the three triangles" which are no longer

triangles before they have vanished, than I can of the

ultimate form of the parallelogi-ams, which, in Lemma
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IT., are supposed to coincide with the curvilinear

space A a E.

Now all these demonstrations are just as unnecessary

as they are obscure. The sum of the inscribed and

the sum of the circumscribed parallelograms in Lemma
II. are never equal, and all that it is necessary to say

is, not that they are equal, but that they have the

same limit A a E. This is perfectly obvious, and to

go beyond this is a supererogation of darkness and

error. Take, for example, the system of circumscribed

parallelograms, A Z, B m, Cn, Do, etc., and if we
obtain an expression for their g, y,

sum, we shall find it to consist i

of two terms. The one will be

constant, and stand for the in-

variable part ofthe sum, namely,

the area A a E ; the other will

be variable, and represent the

variable portion of that sum,

namely, the sum of all the little mixtilinear triangles

abl,h cm, etc., which is the variable excess of the

parallelograms over the constant area A a E. Hence,

if the variable term which represents the sum of these

little triangles be rejected, the exact area A a E will

be obtained, and this is precisely what is done in pass-

ing to the limit of the expression for the sum of the

parallelograms. Now all this is perfectly plain and

palpable. Hence, if the author had been content to

say that the sum of the parallelograms is never equal

to the area A a E, but that this area is the limit of that

sum, then his method would have been as transparent

and easy of comprehension as it is now dark and diffi-

cult to be apprehended. He saw that in the practical

I*
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application of the calculus it was necessary to use

indifferently the sum of the inscribed and the sum of

circumscribed rectangles for one another, or for the

curvilinear space A a E ; but he justified this procedure

on the wrong ground. He justified it on the ground

that they were all ultimately equal ; whereas he should

have done so on the ground that the variable sums,

though never equal, have the same limit. This prin-

ciple, which is so clear in the case before us, is general.

For it is evident that " the limit of the sum of infi-

nitely small positive quantities is not changed when

these quantities are replaced by others whose ratios

with them have respectively unity for their limit."

But this general principle is, if possible, rendered still

more evident by a very short-and easy demonstration in

Duhamel's work.*

The same thing is true in regard to the substitution

of the chord, arc, and tangent for each -other in the

application of the calculus whenever such substitution

answers the purpose of the operator. Newton justifies

this substitution on the ground that these several

quantities are all ultimately equal ; but yet, as long as

the arc has any value at all, it is greater than its chord

and less than its tangent. Newton saw this, and hence,

instead of stopping with Leibnitz, who pronounced

these lines equal when they were infinitely small,

he followed them down still further, and pronounced

them equal after they had passed the bounds of the

infinitely small, and ceased to have any magnitude

whatever. But this view, as Lagrange said, has the

great disadvantage of requiring us to consider quan-

tities in the state in which they have ceased to be

» Vol. I., Chap. VI., p. 35.
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quantities, and become—we know not what. Both
Newton and Leibnitz, however, agreed to justify the

using of " any one of these quantities for any other,"

on the ground that they became equal. The chord,

the arc, and the tangent are coincident and equal

wlien infinitely small j and hence, in seeking their

ratios, they may be indifferently used the one for the

other. The chord, the arc, and the tangent, said

Newton, are all ultimately coincident and equal ; and
hence, " in all our reasoning about ultimate ratios, we
may freely use any one of these lines for any other."

But if -^e justify this substitution, or convertibility, on

the true ground, every possible obscurity will vanish

from the process, and Newton himself, if alive, might

well exclaim, " Behold my theory, or method, resumed

with more of clearness and precision than I myself

could put into it
! " *

This true ground is thus stated and demonstrated

by Duhamel

:

" Second Theorem.—TJie limit of the ratio of two

quantities indefinitely small is not changed when we re-

place these quantities by others which are not equal, but

of which the ratios with them have unity for their limits.

" Let there be, in fact, two indefinitely small quan-

tities a and /?, a' and /S' two other quantities such that

the limits of — and of — may be equal to unity, and

that, consequently, the limits of the inverse ratios

a' B'
—, — may also be equal to unity ; we shall have iden-

P
tically

* The exc-lamation of Carnot when he saw his own theory of the

method of Leibnitz as propounded by Lagrange.
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? — ^ ^ ^

The limits of equal quantities being equal, the limit

of a product being the product of the limits,* we ob-

tain from the above identity, in designating the limits

by the abbreviation Urn., and observing that

lim. — = 1 and Um. — =1,

lim. - = lim. —

,

which it was necessary to demonstrate."

Now the chord, the arc, and the tangent when con-

sidered as small variables, or infinitesimals, exactly

conform to the conditions of this important theorem.

For as every one knows, the limit of = 1, the' ' arc '

limit of = 1, and the limit of = 1.

tangent tangent

Hence, although these lines are not equal, yet, in seek-

ing the limit of their ratios, any one of them may be

freely used for any other; because this, as just clearly

demonstrated, will make no possible difference in the

result.

The same thing is true of the tria,ngles of Lemma
VIII. For, as may be easily seen, the limit of the

ratio of any two of these triangles =: 1. Hence, in

seeking the limit of their ratios, " any one of these

triangles may be freely used for any other," since,

according to the above theorem, this will make no

* See Demonstrations in Chap. II.
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difference in the result.
_ We thus get rid of the

desperate difficulty and darkness of conceiving three

triangles to be inscribed in a single point, and justify

the substitution of any one of them for any other, even

before they have vanished, and while they are still

finite variable magnitudes, on the ground ofa perfectly

clear and unexceptionable principle.

I shall, in conclusion, illustrate these three several

modes of viewing the infinitesimal method by an ex-

ample; and I shall select the question of tangency,

since it was the consideration of that question which

led to the creation of the modern analysis. Let it be

required, then, to determine the tangent line at tho

point C of the curve A C c. Now, as we know from

Trigonometry, the tangent of the angle CV B, which

the tangent line V C T makes with the axis of x, is

equal to , and this, from the similar triangles

BV
TE

C BV and TEC, is equal to . Hence, if we
C E

T E
find the value of , we shall have the tangent of the

CE
IS
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required angle BY C, and the tangent line V C T
may be constructed or drawn.

The only question is, then, how to find the value

T E
of the ratio —— . Now T E, which is the increment

C E
of B C for the tangent line, when A B is made to

assume the increment B b, cannot be found from the

equation of the tangent line, since that line has to be

determined before its equation can be known. Hence,

in all three methods, the line c E is substituted for

T E, in order to find the value of the required ratio

T E"—— . Now, the ground or principle on which this
C E
substitution is justified constitutes precisely the difier-

ence between the methods of Leibnitz, of Newton, and

of Duhamel.

Let us suppose, then, that the line h c moves toward

B C, making the lines C E, C c, and C T continually

smaller and smaller. According to Leibnitz, when

the point c approaches infinitely near to C, so that the

arc C c becomes infinitely small, then the chord C c,

the arc C c, and the tangent C T become coincident

and equal, and consequently c E becomes equal to T E.

Hence, he concluded that c E might be freely and

safely substituted or taken for its equal T E. But,

as we have seen, .this was an error which was after-

wards corrected by the opposite and equal error com-

mitted by him in throwing out certain infinitely small

quantities as nothings in comparison with other quan-

tities. Thus, although he reached the true result, find-

ing the exact value of , he did so by means of an
C E

unsuspected compensation of unsuspected errors. His
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two demands, or suppositions, or postulates, or axioms

were false, and yet his conclusions were correct with-

out his ever having seen why or wherefore. Such was

the method of Leibnitz.

Newton rejected the postulates of Leibnitz. He
refused, as Archimedes had done before him, to con-

sider a curve as a polygon of an infinite number of

sides, or to believe in the absolute coincidence of a

curve and right line, however short the two magni-

tudes. Hence, he denied the coincidence of the two

triangles, c C E, T C E, and the mixtilinear interme-

diate one c C E, as long as e C retained any value

•whatever. Accordingly, in order to establish an

identity between the three triangles in question, so as

to justify the taking of c E for T E, he expressly in-

sists, in the introduction to his Qv.adraturam Curvarum,

that the point c shall not stop short of the point C,

but that these two points shall become exactly coin-

cident, or one and the same point. We are thus re-

quired to believe that a point may be considered as a

triangle, or that a triangle may be inscribed in a point.

Nay, that three dissimilar triangles then become
" similar and equal when they have reached their ulti-

mate form in one and the same point." Who would

not be glad to be delivered from the necessity of such

a belief or opinion ?

Duhamel abandons the idea of any such equality.

He supposes e E and T E to remain always unequal.

But he still insists, nay, he demonstrates, that c E may

be used instead of T E, in order to find the value of

—'-, because lim. = 1. This is evident, for as
C E' T E
the point c approaches the point C, it is obvious that
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c E and T E become more and more nearly equal, and

their difference T c approaches more and more to an

c E
equality with zero. Hence lim. —— = 1, and there-

-

T E
T E

fore in seeking the value of , the line o E may be
C E

used for T E.

Indeed, in the case before us all this is perfectly

evident without the aid of any demonstration what-

T E . .

ever. For , which is always constant, is evidently
C E

. e E
the limit of the variable ratio . For as c ap-

CE ^

. c E
proaches C, the variable ratio approaches in value

C E
T E

the constant ratio , and may be made to approach
C E

it " nearer than by any given difference." Hence, ac-

cording to the definition of a limit, the limit of

c E_TE
C E ~ C E'

If, therefore, we would find the value of the unknown

T E
, ratio —-, we only have to obtain from the equation

C E
e E

of the curve an expression for -— , and then pass
C E

T E
to its limit, which is the value of , than which

' CE
nothing is more easily done. Behold, then, the method

of limits delivered from its obscurities, and rendered

as transparent as the Elements of Euclid

!



CHAPTER VIII.

OF THE SYMBOLS - AND Y <X)

.

If anything in the whole science of mathematics

should be free from misconception and error, one

would suppose it ought to be the symbol 0, which

usually stands for simply nothing. Yet, in fact, this

is precisely one of those symbols which has most fre-

quently led mathematicians from the pure line of truth,

or kept them from entering upon it. " In the fraction

-," it has been said, " if we suppose a to remain con-
6

stant while b continually increases, the value of the

fraction continually diminishes ; when b becomes very

great in comparison Avith a, the value of the fraction

becomes very small ; finally, when b becomes greater

than any assignable quantity, or oo , the value of the

fraction becomes less than any assignable quantity, or

0; hence

00

This kind of differs analytically from the absolute

zero obtained by subtracting a from a, a — a—- 0. It

i,:, in consequence of confounding the arising from

dividing a by oo with the absolute 0, that so much

confusion has been created in the discussion on the

18* 209
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subject. About the absolute there can be no dis-

cussion ; all absolute O's are equal. But the other O's

are nothing else than infinitely small quantities or in-

finitesimals; and there is no incompatibility in sup-

posing that they differ from each other, and that the

ratio of two such zeros may be a finite quantity." *

Such is the author's interpretation of -. It is not

zero divided by zero at all, it is only one infinitely

small quantity divided by another. If so, why in the

name of common sense did not the reasoner say what

he meant, and, instead of calling an infinitely small

quantity 0, represent it by the symbol i, or some other

different from 0. Surely, it was just as easy to say

— = i as it is to say — = 0, or to write — as it is to
00 •' 00 '

i'

write -. And then there would not have been the

least shadow or appearance of the confusion ofwhich he

complains, and of which he endeavors to explore the

origin.

" Logical accuracy," says the author, " would seem"

to require that some other name should be given "to

one of these zeros [most assuredly] ; but if two mean-

ings of the term are fully understood, no trouble

need arise in retaining the nomenclature which has

been sanctioned by the custom of centuries." But

Avliy introduce such utterly needless ambiguities into

the science of mathematics ? Is it only that they may

be explained in dictionaries, and carefully watched by

mathematicians in order to keep out darkness and

confusion from their reasonings ? The truth is, there

* Dictionary of Mathematical Science, by Davies and Peck.
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is no use whatever for any such ambiguity, except to

explain the symbol -, and to dodge other difliculties

of the calculus; causing it to swarm with sophisms

instead of shining with solutions.*

The above explanation is easy, but it does not meet

the difficulties of the symbol - as it arises in the cal-

culus. Indeed, it only deals with that symbol in the

abstract, and not as seen in its necessary connections

in practical operations. The author attempts this in

his well-known work on the Differential Calculus. In

finding the differential co-efficient of m = a x', he gives

to X the increment h, which makes

u' ^=a{x -\- lif^^ax^ -\- 1axh-\- a h'.

Hence u' — u =^ 2 a x h -\- a h',

or =^ 2 ax 4- all.
h

Now, he represents "hj dx the last value of h," that

is, the value of A which cannot be diminished, accord-

ing to the law of change to which li or x is subjected,

without becoming 0, and "by du the corresponding

difference between u' and u." We then have, says he.

du ^
I J— = 2ax -{- a dx.

dx

Now M'c certainly expected him to say this, but he has

said, we then have

* The same learned disquisition on nothing is also found in

"Davies' Bourdon," as well as in other works on Algebra.
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du „— ^ Z ax.
dx

"What, then, has become of tlie term adxl It ap-

pears to have vanished without either rhyme or reason.

How is this mystery to be explained?

" It may be difficult," says the author, " to under-

stand why the value which A assumes in passing to

the limiting ratio is represented by dx in the first

member, and made equal to zero in the second." Truly,

this is a most difficult point to understand and needs

explanation. For if h be made absolutely zero or

nothing on one side of the equation, why should it not

also be made zero on the other side ? It may, if you

please, be zero or nothing sometimes, and sometimes

an infinitely small quantity ; but can it be both at one

and the same time, and in the same operation? It is,

indeed, most convenient to use h in this ambiguous

sense, making it absolutely nothing on one side of an

equation and very small on the other ; for this gives

the true result — =^ 2ax, which might not otherwise
dx

be so easily obtained ; but has the author anywhere

justified in his Logic of Mathematics a process seem-

ingly so arbitrary ? Or is the Logic of Mathematics

so different from all other logic that so flagrant a

solecism is agreeable to its nature ? In other words,

is the Logic of Mathematics so peculiar in its character

that li, the same identical quantity, may be both some-

thing and nothing at one and the same time? If so,

then, in spite of the author's learned treatise, there- is

no telling what may not happen in the Logic of Ma-

thematics. But, for one, I shrewdly suspect that there
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3

is no rule in arithmetic, nor in algebra, nor in geome-

try, nor in the calculus, by which' the answer to a

question may be forced without regard to the ordinary

laws of human thought or sound reasoning.

" We have represented by d x" says the author,

" the last value of /t." That is, " the last which A can

be made to assume in conformity with the law of its

change or diminution without becoming zero." But

why sliould li, in the second member and not as well

in the first, obey this law of change ? Why should it

there, and there alone, kick out of the traces and be-

come nothing in spite of the law of its existence?

Because (the answer is easy) this is necessary to find

the true result. The author, indeed, assigns another

reason. " By designating this last value by d x," says

he, " we preserve a trace of the letter x, and express

at the same time the last change which takes place in

h as it becomes equal to zero." But why should " a

trace of the letter x" be preserved in the first member

of the equation and not in the second ? The reason

is, just because da; is needed in the first member and

not in the second to enable the operator to proceed

with his work. The author might have fortified his

position by very good authority, since Boucharlat,* as

well as other writers on the Diiferential Calculus, have

conceived the same laudable desire to preserve "a
trace of the letter x" in one member of all similar

equations, while they unceremoniously eject it from

the other member.

But is this all that can be said by the teachers of

* The intelligent reader, even if he had not been told in the pre-

face, would have known that Dr. Davies had freely used the work
of Boucharlat.
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the calculus ? Must they be thus for ever foiled in

their attempts to grapple with the difficulties of the

very first differential co-efficient ? Shall they continue

thus grievously to stumble at the very first step in the

path of science, along which they undertake to guide

the thinking and reasoning youth of the rising gene-

ration ? Shall they continue to seek and find what

no other rational beings have ever found, namely, that

particular value of " which does not depend on
h

the value of A ?" * That is to say, that particular value

of a fraction which does not depend on its denom-

inator ! t I think it is quite otherwise. Such miscon-

ceptions or blunders may have been unavoidable in

the dim twilight of the science, or before the grand

creations of a Newton or a Leibnitz had so completely

emerged, as at the present day, from the partial chaos

in which their great creators necessarily left them in-

volved. But they are now anything rather than an

honor to the age in which they continue to be repro-

duced. Some, it is to be feared, make haste to become

the teachers before they have become the real students

of those sublime creations.^

» Davies' Differential Calculus, p. 11.

t The same thing is found in Mr. Courtenay's Calculus (p. 61), as

well as in a multitude of others.

X I am sure this was the case with myself. The ignorant boy, if

he has only graduated high in mathematics at West Point, is apt to

presume—what, indeed, is more presumptuous than ignorance?—that

he is qualified to teach the calculus ; although he may never have

learned its very first lessons aright, or been once taught and made

to see the rational principles which lie concealed beneath its formulia

and enigmas. I had not been a teacher of the calculus long, how-

ever, before I discovered that I had almost everything to learn re-

specting it as a, rational system of thought. Difficulties were con-
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One thing appears perfectly evident to my mind,

and that is, that A should be made nothing in both

members of the equation, or else in neither. I must

think this or else refuse to think at all. Hence, we
have

— ^= lax -]- adx,
dx

or - = 2ax.

But if we adopt this last form, we escape the illegiti-

mate expression — = 2 ax, with all its shuffling
dx

sophisms, only to encounter -, the most formidable of

all the symbols or enigmas in the differential calculus.

This symbol has, in fact, always been a stumbling-

block in the way of the method of limits ; the great

and affrightful empusa which has kept thousands from

adopting that method. Even Duhamel shrinks from

a contact with it, althongh its adoption seems abso-

lutely necessary to perfect the method of limits. For

if two variables are always equal, then their limits are

equal. But the limit of 2 ax -\- ah is 2 a x, and the

tinually suggested in the course of my reflections on the subject,

about which I had been taught nothing, and consequently knew
nothing. I found, in short, that I had only been taught to work the

calculus by certain rules without knowing the real reasons or prin-

ciples of those rules : pretty much as an engineer, who knows nothing

a«out the mechanism or principles of an engine, is shown how to

work it by a few superficial and unexplained rules. This may be a

very useful sort of instruction ; it is certainly not mental training or

education. It may be knowledge; it is not science.
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limit of is -. Hence, if we are not afraid to
h

trust our fundamental principle or to follow our logic

to its conclusion, we must not shrink from the symbol

This symbol is repudiated by Carnot and La-

grange. It is adopted by Euler and D'Alembert ; but

they do not proceed far before it breaks down under

them. It is, nevertheless, one of the strongholds and

defences of the method of limits, which cannot be sur-

rendered or abandoned without serious and irreparable

loss to the cause.

Carnot thus speaks of this symbol :
" The equation

= —-— found in section (9) is an equation

always false, though we can render the error as small

as we please by diminishing more and more the quan-

tities M Z, E Z ; but in order that the error may dis-

appear entirely, it is necessary to reduce these quan-

tities to absolute O's ; but then the equation will reduce

V
itself to - = —-— , an equation which we cannot say

a— X

is exactly false, but which is insignificant, since - is

an indeterminate quantity. We find ourselves, then,

in the necessary alternative either to commit an error,

however small we may suppose it, or else fall upon a

formula which conveys no meaning; and such is pre-

cisely the knot of the difficulty in the infinitesimal

analysis." *

As in the problem of quadratures, the only alterna-

tive seemed to be either to commit an error with Pas-

* Reflexions, etc., Chap. I., p. 41.
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cal by rejecting certain small quantities as zeros, or to

find with Cavalieri the sum of an infinity of nothings,

which, in the modern algorithm, is equivalent to the

symbol € X <» ; so in the question of tangency the only

alternative seems to lie between committing a similar

error with Leibnitz, by the arbitrary rejection of infi-

nitely small quantities in the second member of an

equation as nothing, or the recognition and adoption

of the symbol -. I have already said that, as it seems

to me, there is a profound truth at the bottom of Cava-

lieri's conception, or in the symbol X oo , which has

never been adequately understood or explained. Pre-

cisely the same thing appears to me perfectly true in

regard to the conception of Newton, which, if properly

understood, is the true interpretation of the symbol -.

Now the objection, which is always urged against

the use of this symbol, or this form of the first differ-

ential co-efficient, is, that - is an indeterminate expres-

sion, and may therefore have one value as well as an-

other. Or, in other words, that it means all things,

and therefore means nothing. This objection is re-

peatedly argued by Carnot, with whom the method of

Leibnitz evidently ranks higher than that of Newton.
" It seems," says he, " that infinitely small quantities

being variables, nothing prevents us from attributing

to them the value of as well as any other. It is

true that their ratio is -, which may be equally sup-

posed a or 6, as well as any other quantity whatever." *

» Reflexions, etc., Chap. III., p. 182.

19 K
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Again, in reply to those who complain of a want of

logical rigor in the method of Leibnitz, Carnot makes

him thus retort in a feigned speech : "All the terms

of their equations vanish at the same time, so that

they have only zeros to calculate, or the indeterminate

ratios of to to combine." *

Even those who, by a regard for logical consistency,

have been compelled to adopt the symbol - as the true

expression for the first differential co-efficient, have

utterly failed to emancipate themselves from the influ-

ence of the above difficulty or objection. That " sym-

bol of indetermination," as it is always called, has

still seemed, in spite of all their logic, as vague and

undefined as Berkeley's " ghosts of departed quanti-

ties." Even D'Alembert himself is no exception to

the truth of this remark. For, in his celebrated article

on the metaphysics of the differential calculus in the

d 11

MieydopSdie, he says :
" Thus —^ is the limit of the

dx
ratio of z to u, and this limit is found by making 2 =

in the fraction — . But, it will be said, is it not

2y+ z
'

necessary to make also 3= and consequently m ==

in the fraction - =
, and then we shall have

- = — ?" That is to say, is it not necessary to make

2 = in the first as well as in the second member of

the equation? Most assuredly, in the opinion of

D'Alembert, although this should bring us into actual

contact with the symbol -.

* Beflexions, etc., Chap. I., p. 37.
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" But what is it," he continues, " that this signi-

fies?" Ay, that is the very question: what is it that

this symbol signifies ? Has it any sense behind or

beyond that vague, unmeaning face it wears? and if it

has, what is its real sense ? "I reply," says D'Alem-

bert, " that there is no absurdity in it, for - can be

equal to anything that we please ; hence it can be—."

But no one ever suspected - of having any absurdity

in it
J

it was only accused of having no signification,

of meaning one thing just as well as another, and, con-

sequently, of meaning nothing to any purpose under

the sun. True, if - may have any value we please,

then it may be equal to —, if we so please ; but, then,
2 2/

it is equally true that if we please it may be equal to

any other value just as well as to —. But is not this

... ^2/
simply to repeat the objection instead of replying to

it? If, we ask, what signifies -, Carnot replies, it

signifies anything, a ov b, — or —^, or any other

quantity we may please to name, and D'Alembert re-

peats the reply ! Is that to defend the symbol - or

explain what it signifies? Or, in other words, is that

to remove the objection that it is a symbol of inde-

terminatioli, which signifies everything, and conse-

quently nothing?
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M. D'Alembert adds :
" Though the Unlit of the

ratio of « to M is obtained when z = and m == 0, this

limit is not properly the ratio of 2= to m= 0, for

that presents no clear idea ; we know not what is a

ratio of which the two terms are both nothing. This

limit is the quantity which the ratio - approaches

more and more in supposing z and u both real and

decreasing, and which that ratio approaches as near as

we please. Nothing is more clear than this idea; we can

apply it to an infinity of other cases." Now there is

much truth in this second reply ; but, if properly

understood and illustrated, this truth will be found

utterly inconsistent with the first reply of D'Alem-

bert. If, then, we would see what the symbol -

really signifies, we must explode the error contained

in D'Alembert's first reply (or in Carnot's objection),

and bring out into a clear and full light the truth in

his second reply. This will vindicate the true charac-

ter of this all-important and yet much-abused symbol.

The expression - is, ias it stands or arises in the

calculus, not a " symbol of indetermination." Ifviewed

in the abstract, or without reference to the laws or

circumstances to which it owes its origin, then, indeed,

it has no particular meaning or signification. But

nothing, as Bacon somewhere says, can be truly under-

stood if viewed in itself alone, and not in its connec-

tion with other things. This is emphatically true in

regard to the svmbol -. If abstracted fipm all its

connections in the calculus, and viewed in its naked
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form, nothing, it is admitted, could be more indeter-

minate than -. It is, indeed, precisely this unlimited

indetermination of the abstract symbol which consti-

tutes its great scientific value. For, as Carnot himself

says, " It is necessary to observe that the expression

of variable quantities should not be taken in an abso-

lute sense, because a quantity can be more or less in-

determinate, more or less arbitrary ; bvi it is precisely

upon (lie different degrees of indetermination of which the

quantity in general is susceptible that every analysis

reposes, and more particularly that branch of it which

we call the infinitesimal analysis." * If such is, then,

the true character of the symbols in every analysis, and

especially in the infinitesimal analysis, why should it

be objected against one symbol and against no other?

Every one knows, for example, that x and y stand for

indeterminate values as well as -. Why, then, should

this last symbol be objected to on the ground that

it is indeterminate? No one means that its value

may not, in each particular case, be determined,

and if any one should so mean, he might be easily

refuted. The more indeterminate the symbol, says

Carnot, the better, and yet it is seriously objected to

the symbol -, that " it is a quantity absolutely arbi-

trary" or indeterminate ! f

"I have many times," says Carnot, "heard that

profound thinker [I^agrange] say, that the true secret

of analysis consists in the art of seizing the various

degrees of indetermination of which the quantity is

* Reflexions, etc., Chap. I., p. 18. f Ibid., Chap. III., p. 184.

19«
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susceptible, and with which I was always penetrated,

and which made me regard the method of indeter-

minates of Descartes as the most important of the co-

rollaries to the method of exhaustions." * That is to

say, as the most important of the methods of the infini-

tesimal analysis, for he regards all these methods as

corollaries from the method of exhaustion. Again,

in his beautiful commentary on the method of Des-

cartes, he says :
" It seems to me that Descartes, by

his method of indeterminates, approached very near

to the infinitesimal analysis, or rather, it seems to me,

tlmt the infinitesimal analysis is only a happy applica-

tion of the method of indeterminates." * He then pro-

ceeds to show that the method of Descartes, and its

symbols of indeterminates, lead directly to some of the

most striking and important results of the infinitesimal

analysis. Surely, then, he must have forgotten the

great idea with which he was always so profoundly

penetrated, when he singled out and signalized the

symbol - as objectionable on the ground that it is

indeterminate. It may, it is true, be " either a or 6
;"

but so may x and y. These symbols may, as every

one knows, be " a or b," 2 a or 2 6, 3 a or 3 6, and so

on ad infinitum. Yet no one has ever objected to these

symbols that they are indeterminate. On the con-

trary, every mathematician has regarded this indeter-

mination as the secret of their power and utility in

the higher mathematics. This singular crusade of

mathematicians against one poor symbol -, while all,

other symbols of indetermination are spared, is certainly

* Reflexions, etc., Chap. III., p. 208. f ii>>(^-> V- '*"•
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a very curious fact, and calls for an explanation. It

shall in due time be fully explained.

So far from denying that -, abstractly considered,

is indeterminate, I mean to show that it is, in the words

of the objection to it, " absolutely arbitrary." This

degree of indetermination is, indeed, the very circum-

stance which constitutes its value, and shows the high

rank it is entitled to hold among the indeterminates

of geometry. It is, in other words, its chief excellency

as a mathematical symbol, that it may not only come

to signify " a or h," but any other value whatever,

covering the whole region of variable ratios from zero

^to infinity. Instead of denying this, this is the very

point I intend to establish in order to vindicate the

character of the symbol -.

Let S T be a secant cutting the circumference of

the circle in the points A and B, the extremities of

two diameters at right angles to each other. Conceive

this secant to revolve around the point A, so that the
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point B shall continually approach A. —— is equal

to the tangent of the angle B A O, which S T makes

with the line A O, and in each and every successive

position of the secant, such as s t, — is equal to the
Ao

tangent of the angle which it makes with A O. As

B approaches A, this angle, and consequently its tan-

gent, continually increases. That is to say, although

b and A o continually decrease, their ratio— con-
A

tinually increases. The limit of the angle 6 A o is the

right angle T' A O, whose tangent is equal to infinity,

toward which, therefore, the ratio — continually
A

tends. Hence, when the arc h A becomes indefinitely

small, the angle 6 A o approaches indefinitely near to

the right angle T' A O, and approaches in value

the tangent of that right angle. The secant s t can

never exactly coincide with its limit, the tangent A T',

since that tangent has only one point in common with

the circumference of the circle, while the secant always

has, by its very definition, two points in common with

that circumference. Then, if we pass to the limit by

makingA o= 0, and consequently 6 o= 0, the equation

—° = tan. 6 A will become - = tan. T' A o = oo .

Ao
Again, if we conceive S T to revolve around the point

B, making A continually approach toward B, we shall

always have = tan. B r o. But, in this case, the

a
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angle which the secant s t makes with the line A 0,

has zero for its limit. Hence, if we pass to the limit

the equation = tan. B r o, will become - = 0.

a o

Thus, the limit of the ratio of two indefinitely small

quantities may be either infinity or zero. It is easy

to see that it may also be any value between these two

extreme limits, since the tangent which limits the

secant may touch the circumference in any point be-

tween A and B. For example, the tangent of the

tan. bY d becomes - == tan. T P d.

angle hV d, which the secant P b makes with P d, or

A O produced, is always equal to— , as b approaches

the point of contact P. Hence, if we pass to the

limit, —
' Vd

Precisely the same relation is true in regard to every

point of the arc AB. Hence, if the point of contact

P be supposed to move along the arc A B from B to

A, the value of the tangent of the angle T P cZ, or of

-, will vary from to oo . But it should be particu-

K»
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larly observed, and constantly borne in mind, that if

the question be to find the tangent line to any one

point of the arc A B, then - will have only one defi-

nite and fixed value, for this is an all-important fact

in the true interpretation of the symbol in question.

The symbols x and y are indeterminate, just as much

so as -. But if we suppose a particular curve, of which

X and y are the co-ordinates, and make a; equal to a, then

y becomes determinate, and both symbols assume defi-

nite and fixed values. Now it is precisely this inde-

termination of the symbols x and y, abstractly con-

sidered, with the capacity to assume, under some

particular supposition, determinate and fixed values,

that constitutes their great scientific value. Considered

as the co-ordinates of any point of any curve, x and y
are of course indeterminate, absolutely indeterminate

;

but for a particular point of a given curve they are

determinate and fixed in value. In like manner,

although the symbol -, if considered in a general and

abstract point of view, or, in other words, with refer-

ence to a tangent to any point of any curve, it is in-

deed absolutely indeterminate. But the moment you

seek the tangent to a particular point of a given curve,

the - for that point has, and can have, only one value.

There is, then, no more reason why this most useful

symbol should be distrusted, or decried, or rejected

from the infinitesimal analysis as indeterminate, than

there is for the rejection of x and y or any other sym-

bol of indetermination from the same analysis. The
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very quintessence and glory of that analysis, indeed,

consists in the possession and use of precisely such

symbols of indetermination. Why, then, I ask again,

should one be singled out and made the object of

attack ?

The explanation of this partial, one-sided, and slip-

shod method of judgment may be easily given. In

the ordinary analysis, or algebra, the symbol - is not

only indeterminate, but it sometimes arises under cir-

cumstances which still leave it as indeterminate as

ever, failing to acquire any particular value or values

whatever. This is the case in the familiar problem

of the two couriers. If they start from the same

point, travel in the same direction, and with the same

speed, it is evident that they Mill always be together.

Hence, if in the formula for the time when they will be

together = t, we make a, or the distance be-

tween the points of departure, ^ 0, and m — n, the

difference between the number of miles they travel per

hour, also = 0, we shall have, as we evidently ought

to have,

Now here the symbol - remains indeterminate in the^

concrete, or with reference to the facts of the case, as

it was in the abstract, or without reference to any

particular facts or case. And the same thing is true

in all cases in which a fraction, like , becomesm — n
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— in consequence of two independent suppositions, the one

causing the numerator and the other the denominator

to become = 0. Thus the student of mathematics

becomes, in his first lessons, familiar with the symbol

— as not only indeterminate in the abstract, but also in
'

the concrete. That is, he becomes habituated to pro-

nounce it indeterminate, because it has no value in

general, and can have none in the particular cases

considered by him. Hence, from the mere blindness

of custom (for it seems utterly impossible to assign any

other reason), he continues to regard it always and

everywhere in the same light. He spreads, without

reflection, this view of the symbol in question over the

whole calculus, and thereby blots out its real signifi-

cance and utility.

In the infinitesimal analysis the symbol - arises,

not in consequence of two independent suppositions, but

in consequence of one and the same supposition, which

makes both denominator and numerator ^= 0. Thus,

g ft

in the case considered by D'Alembert - =
, z is

u 2y + z

made = 0, and this makes its function m = 0. The

ratio - always tends, as z becomes smaller and smaller,
u ''

toward the limit — , and hence in passing to the

limit, by making z ^= 0, we have

_ a^

b~2y
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Now in this case - may not have any value as in the

case of the couriers; for it has, and can have, only one

value, which is — . Hence D'Alembert was in error

23/

when he said that since - may have any value, it may

have this particular value as well as any other ; for

this implies that it may have any other value as well

as— ; whereas, in the case under consideration, it

must have exactly this value, and can not possibly

have any other. Considered in the abstract, then, or

without reference to the facts and circumstances of any

particular case, the symbol - may be said to be inde-

terminate. But yet, in very truth, this symbol never

arises in the calculus without a precise signification or

value stamped on its face. As it appears in the cal-

cnlus, then, it is no longer indeterminate; it is perfectly

clear and fixed in value. It derives this fixed value

from the very law of its origin or existence, and, under

the circumstances to which it owes that existence or

its appearance in practice, it cannot possibly have any

other value whatever.

It seems wonderful that in the very works from

which - is rejected as an unmeaning " symbol of inde-

termination," there should be methods set forth in

order to find its precise value. Thus in Mr. Courte-

nay's Calculus, as well as in many others that repudi-

ate the symbol in question, there is a method for find-

20
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ing the value of -.* Neither he, nor any one else,

ever found the value of -, except in reference to some

particular case in which it was determinate, having

assumed a concrete form. But, what seems most

wonderful of all, they have a method for finding the

determinate value of - when that value is not obvious,
'

and yet they assert it has no determinate value when

it appears with one stamped, as it were, on its very

face. Thus, if we seek the trigonometrical tangent of

the angle which the tangent line to any point of the

common parabola, whose equation is ^' = a x, makes

with the axis of x, we have

_ a_^

'0~2y'

the exact value which is made known by pure geo-

metry. Now here - arises, or appears in the calculus,

with this precise, definite value — , and yet the opera-

22/

tor, looking this determinate value in the face, de-

clares that - has no such value. If he.could not see

this value, then he would apply his method to find it;

but when it looks him in the face, and does not require

to be found, he declares that it has no existence

!

The two variable members of the equation

u 2 y -\- z

» Chap. VII., p. 11.
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are always equal, and hence their limits are equal.

That is to say, the limit of the one - = — , the limit

of the other, Now here - is, as D'Alembert says, not

the symbol of a fraction, since zero divided by zero

conveys no " clear idea." It is the symbol of a limit.

This is its true character, and it should always be so

understood and interpreted. It is the limit, the con-

stant quantity,— [y being the ordinate to the point

of contact), toward which the value of the fraction -

u
continually converges as z, and consequently u, becomes

less and less.

Hence there is no necessity of dodging the symbol

-, as so many mathematicians are accustomed to do.

Having reached the position • = 2ax -{- ah,
h

Dr. Davies could not say, with downright logical

honesty, if we make A = 0, we shall have

- =^ 2ax.

On the contrary, he makes A = in one member of

his equation, and = dx, ov the last value of x, in the

other. By this means he preserves a trace of the letter

u, as well as of the letter x, in one member of his

equation, and most adroitly escapes the dreaded formula

-. But there was no necessity whatever for any such
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logical legerdemain or jugglery.

ever have any occasion whatever to use this he

For if he should

a
might just substitute its value, already found, 2 ax,

for it, and have no further difficulty. He might, in

d u
fact, have written his result— = 2 a a;, provided he

d X

had understood by — , not the last ratio of
d X h

but the limit of that ratio, or the constant value which

that ratio continually approaches but never reaches.

It would be doing great injustice to Dr. Davies, if

he were represented as standing alone in the perpe-

tration of such logical dexterity. We ought to thank

him, perhaps, for the open and palpable manner in

which he performs such feats, since they are the more

easily detected by every reflecting mind. It is cer-

tain that the same things are done with far greater

circumspection and concealment by others, not de-

signedly, of course, but instinctively ; hiding from their

own minds the difficulties they have not been able to

solve. We have a notable example of this in the

solution of the following problem: "To find the gene-

ral differential equation of a line which is tangent to

a plane curve at a given point x', y'.

T A
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" The equation of the secant line E, S passing

through the points x' y' and x" y"^ is

y-2/' = ^^(^-^')--- (1)
x"— x'

" But if the secant R S be caused to revolve about

the point P', approaching to coincide with the tangent

T V, the point P"will approach P', and the differences

y"— y' ^nd xf'— x' will also diminish, so that at the

limit, where R S and T V coincide, — will reduce
x"— x'

dy'

dx'

civ
to —^, and the equation (1) will take the form

y~y' = ^,{x-x')... (2)
dx'

which is the required equation of the tangent line at

the point x' y'." *

Not exactly, for when R S coincides with T V, the

point P"coincides with P', and the two become one

and the same point. Hence, when R S coincides with

TV, or the point P"with the point P', the equation

(1) takes the form

y — y' = -^{x— x').

But in order to shun the symbol -, which the author

did not approve, he committed the error of supposing

P" to coincide with P', without supposing the differ-

ences of their abscissas and ordinates to vanish, or

become = 0. But most assuredly if x' is the abscissa

* Courtenay's Calculus, Part II., Chap. I., p. 148.

2fl»
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of P' and oo" is the abscissa of P", thenAvhen P" coin-

cides with P', x" will be equal to x' and the difference

x"— x' will be = 0. The same thing happens in re-

gard to the difference y"— y', for when the points P'

and P" coincide, it is clear that the difference of their

ordinates y"— y' = 0. But the author preferred the

inaccurate expression —^ to the symbol -, which, in

every such case, is perfectly accurate, as well as per-

fectly determinate. And he obtains this inaccurate

expression by means of the false supposition that P' and

P"may coincide without causing y"— y', ov x"— x'

to become = ; which, in the application of the pro-

cess to any particular curve given by its equation, is

just exactly equivalent to making the increment of

a; = on one side of the equation and not on the

other. It is precisely the process of Dr. Davies re-

peated in a more covert form.

I object to the system of Dr. Courtenay, as well as

to that of Dr. Davies, because they both freely use the

terms limit and indefinitely small without having once

defined them. Nor is this all. They habitually pro-

ceed on the false supposition that the variable reaches

or coincides with its limit. Thus, in the example

just noticed, it is supposed that the limit of the vari-

able ratio -——^ is its last value —^ ; whereas its

x"— x' d x'

real limit lies beyond its last value, and is accurately

found only by making y'^ — y' = 0, and x^ — 2;' = 0.

For, as we have repeatedly seen, it is no value of the

ratio ^- — , which is equal to the tangent of the angle
x"— x'

which the tangent line at the point x' y' makes with
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the axis of x. That tangent is equal, not to the last

value of the ratio —, but to the limit of that
x"— x'

ratio ; a quantity which it may approach as near as we
please, but can never reach. Again, they freely speak

of indefinitely small quantities, and yet, in no part of

their works, have they defined these most important

words. But they habitually use them in a wrong

sense. Instead of regarding indefinitely small quan-

tities as variables which continually decrease, or which

may be supposed to decrease as far as we please with-

out ever being fixed or constant, they consider them

as constant quantities, or as acquiring fixed and un-

alterable values. Thus, in the systems of both, dx,

or the last value of the variable increment of x, is re-

garded as a constant quantity. With such conceptions,

or first principles, or elements, it is impossible for the

ingenuity of man to form a differential calculus free

from inaccuracies and errors. All the works, in fact,

which have been constructed on those principles are,

like the two under consideration, replete with solecisms

and obscurities. It would require much time and toll

to weed them all from the calculus—at least the pro-

duction of a volume.

But one more must, in this place, be noticed, both

because it is very important, and because it relates to

the interpretation of the symbol -. In the discussion

of multiple points, at which of course there are several

branches of the curve, and consequently one tangent

dy' .

for each branch, it is said, that —^ = -, since it " can-
'

dx'

not liave several values unless it assumes the indeter-
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minate form -."* Now here, at least, the author
'

resorts to -, because he cannot proceed without it, and

he gives the wrong reason for its use. The truth is,

if there are two branches of the curve meeting at one

point, then will -, as found from the equation of the

curve for that point, have exactly two determinate

values—precisely as many as are necessary to determine

and fix the positions of the two tangents, and no more.

In like manner, if three or four branches of a curve

meet in the same point, they give rise to a triple or

quadruple point ; then will -, obtained with reference

to that point, have three or four determinate values,

or exactly as many as there are tangent lines to be

determined. If the secant passing through the com-

mon point first cuts one branch of the curve and then

another, the - found for one branch will, of course,
'

have a different value from the - obtained with refer-

ence to the other branch. Thus, such is the admir-

able adaptation ofthe symbol - to all questions of tan-

gency, that it will have just as many determinate

values as it ought to have and no more, in order to

effect the complete and perfect solution of the problem.

But it is a manifest error to say that - is indetermi-
^

» Courtcnay's Calculus, Part II., Chap. II., p. 191.
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nate in any such case, because it has two or three or

four determinate values. The truth is, we use it in

such cases, not because it is indeterminate, but just

because it is determinate, having precisely as many
determinate values as there are tangents to be deter-

mined. These are determined and fixed in position,

not by the indeterminate values of -, but by its deter-

minate and determined values.

The above reason for the use of - in the discussion

of multiple points was assigned by Descartes, who, in

the dim twilight of the nascent science, knew not what

else to say; and it has since been assigned by hun-

dreds, simply because it was assigned by Descartes.

But is it not truly wonderful that it should be em-

"ployed to determine two or three or more tangents at

the multiple points of a curve, and yet utterly re-

jected as not sufficient to determine one tangent when
there is one curve passing through the point ? Is it

not truly wonderful that it should be thus employed,

because it is indeterminate, and yet rejected for pre-

cisely the same reason ? It is quite too indeterminate

for use, say all such reasoners, when it arises with one

value on its face ; but yet it may, and must be used,

when it arises with two or more values on its face,

just because it is indeterminate ! How long ere such

glaring inconsistencies and grievous blunders shall

cease to disgrace the science of mathematics? Shall

other centuries roll away ere they are exploded and

numbered among the things that are past ? Or may

we not hope that a better era has dawned—an era in
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which mathematicians must tJmifc, as well as manipu-

late their formula?

Only one other point remains to be noticed in regard

to the symbol -. It is said, if we retain this symbol

our operations may be embarrassed or spoiled by the

necessity of multiplying, in certain cases, both mem-
bers of an equation by 0. But the answer is easy.

The first differential co-efficient, if rendered accurate,

always comes out in the form of - ; but it need not

dv'
retain this form at all. Whether we use - or —^ in

dx'
writing the differential equation of a tangent line to

the point x', y', we shall have to eliminate - in the one

dy' .

case, and —— in the other, in order to make any prac-

tical application of the formula. Now - is just as

easily eliminated by the substitution of its value in

any particular case as is —^, and besides its value may

be found and its form eliminated by substitution with-

out any false reasoning or logical blunder, which is

more than can be said for the form —^.
dx'

For if we write the formula in this form,

and i:)roceed to apply it, we shall have to commit an
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error in the elimination of —!^. Suppose, for exam-
dx'

pie, the question be to find, by means of this general

formula, the tangent line to the point x', y' of the com-
mon parabola, whose equation \%y^ = 1'px. If, then,

we would be perfectly accurate, we should have

dy' "p dy''^

dx' y' 2y'dx'

How shall we, in this case, get rid of the last term

dv''^— ? Shall we make it zero by making dy' = 0,
ly' dx'

dv'
and yet not consider —^ = -, or shall we throw it out

•'

dx'

as if it were absolutely nothing, because it is an infinitely

small quantity of the second order ? Both processes

are sophistical, and yet the one or the other must be

used, or some other equivalent device, if we would arrive

d v' Ti

at the exact result —^ := — ; the result which is found,
dx' y'

or rather forced, in the calculus of Dr. Courtenay,*

as well as in others which have been constructed on

the same principles.

Now, in the second place, suppose the general

formula is written in this form

:

y— y'^-{x — x').

We here see, by means of x', y', the point with reference

to which the value of - is to be found. We obtain,

as in the last, the expression

:

* See Part II., Chap. I., p. 150.
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dx y 2y.dx

in which d y and d x are regarded as the increments

of y and X, which increments are always variables and

never constants. As dx, and consequently dy, be-

comes smaller and smaller, it is evident that the last

term — becomes less and less, since dy', the
2y .dx

square of an indefinitely small quantity, decreases

much more rapidly than its first power. Hence, the

term in question tends continually towai'd its limit

zero, and if we pass to that limit by making d x, and

consequently dy, =0, we shall have

—P.
o~ y'

or for the point x', y', we shall have

Q~ y''

which substituted for — in the general formula, gives

y—y'=^-,{^— ^')-

y'

Thus, precisely the same result is arrived at as in the

former case, and that, too, without the least appear-

ance of a logical blunder, or shadow of obscurity.

The foregoing reflections may be easily extended to

the formula X <» , which is also called a symbol of

indetermination. It is, indeed, in many cases—nay, in

all cases that arise in practice—the symbol of a limit,
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whose exact value may be found. There is, in Dr.

Courtenay's Calculus, as well as in others, a method

for finding the value of X oo when this symbol does

not arise with its value on its face, or on the opposite

side of an equation. In every case in which its value

is thus found X oo is the limit toward which a

variable quantity continually converges, but never

exactly reaches, as any one may see by referring to the

cases in the calculus of Dr. Courtenay, or of any other

author.

Let us take, for example, the case considered by

Cavalieri, whose conception may be expressed by the

symbol X <» . He considered, as the reader will

remember, the question of the quadrature of any

plane curvilinear area. If we conceive the base A E
of any such area A a E, to

be divided off into equal

parts, and represent each

part by //, and the whole

number of parts by n, and

if we conceive a system of

inscribed parallelograms, or

rectangles, erected on those

equal parts as seen in the

figure, and let y represent

their varying altitudes, we shall have for the sum of

the rectangles the expression

y h y, n.

But this sum, as we have seen, is never equal to the

curvilinear area A a E, though by continually dimin-

ishing the size of each rectangle, and consequently

increasing the number of all, the sum may be made
21 L
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to approach as near as we please to the area A a E, or

to differ from it by less than any given area or space.

Hence A a E is, according to the definition of a limit,

the limit of the sum of the rectangles in question. As

h becomes less and less, or converges toward its limit

0, n becomes greater and greater, or tends toward its

limit 00 ; and if we pass to the limit by making h abso-

lutely nothing, we shall have for the limit of the sum
of said rectangles X oo . Now this is not to be

read or understood as zero multiplied by infinity, but

simply as, in this case, the limit of y h X n. Or, in

other Avords, it is the symbol, not of a product, but of

the limit of a sum of indefinitely small quantities

whose number tends toward oo as their respective mag-

nitudes tend toward 0. Accordingly, if we find the

limit of that sum for any particular quadrature, we

shall find the value of X <» for that. case, or, in

other words, the exact value of the area required.

Such was, at bottom, the idea of Cavalieri ; but that

idea was so obscurely perceived by him that he con-

fessed he did not understand it himself. It was cer-

tainly most inadequately exjjressed by "the sum of

lines," just as if the sum of any number of lines, how-

ever groat, could make up an area or surface. Cava-

lieri was right in refusing to say with Roberval and

Pascal, " the sura of the rectangles," because that sura

is never equal to the required area. But, instead of

his own inadequate expression, he should have said

the limit of that sum, or the value of X <» considered

as the symbol of such limit ; that is to say, provided

either he or the world had been ready for the exact

utterance of the truth. The mathematical world is,

indeed, scarcely yet prepared for the perfect utterance
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of the truth in question, so imperfectly has it under-

stood or interpreted the symbol X oo , as well as

the symbol -. To interpret these two symbols truly

is, in fact, to untie all the principal knots of the Dif-

ferential and Integral Calculus, and cause their mani-

fold difficulties and obscurities to disappear.

The symbol X oo may be easily reduced to the

form -, a transformation which is effected in every

complete treatise on the calculus. Thus, in Dr. Cour-

tenay's work it is transformed :
" to find the value of

the function i« = PxQ = Fa: X p x, which takes

the form oo X when x=^ a. Put P ^ - . Then
P

«=— =:- when a; =^ «, the common form."* He thus
P

reduces oo X to the form -, which he trulv calls

" the common form" for all the symbols of indetermina-

tion. He enumerates six such symbols, namely, —

,

±00
. .

°°

00 X 0, 00 — 00 , , 00 ,1 ; all of which, in suc-

cession, he reduces to the one common form -, and
'

deals with them in this form. Now, not one of these

symbols has any signification whatever except as the

limit of some variable expression or quantity, and

since they are reducible to the form -, and are dis-

cussed under that form alone, it is clear that it is

» Part I., Chap. VII., p. 85.
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absolutely indispensable to the correct understanding

of the calculus or the doctrine of limits that we should

possess the true interpretation of the symbol -. That

interpretation is, indeed, the key to the calculus, the

solution of all its mysteries. Hence the labor and

pains I have been at in order to perfect that interpre-

tation, which has not been, as some readers may have

suspected, " much ado about nothing." I have always

felt assured, however, that the mathematician who has

the most profoundly revolved the problems of the cal-

culus in his own mind will the most fully appreciate

my most imperfect labors.

If any one has suspected that in the foregoing re-

flections on the philosophy of the calculus I have

given undue importance to the question of tangency,

from which nearly all of my illustrations have been

drawn, the answer is found in the words of a cele-

brated mathematician and philosopher. D'Alembert,

in the article already quoted, says with great truth

:

" Tiiat example suffices for the comprehension of

others. It will be sufficient to become familiar with

the above example of tangents to the parabola, and. as

the whole differential calculus may be reduced to the

problem of tangents, it follows that we can always

apply the preceding principles to the diffiirent pro-

blems which are resolved by that calculus, such as the

discovery of maxima and minima, of points of inflex-

ion and of " rebroussement," etc.* But, after all, the

question of tangents, however general in its applica-

tion, is not the only one considered in the preceding

pages. The question of quadratures is likewise therein

* Encyclop^die, Art. Differential,



THE PBILOSOPHY OF MATHEMATICS. 245

considered and discussed— a question which was the

very first to arise in the infinitesimal analysis, and

which agitated the age of Cavalieri. Yet the diffi-

culties attending this question, which Cavalieri turned

over to his successors for a solution, have, so far as I

know, received but little if any attention from writers

on the philosophy, or theory, or rationale (call it what

you please) of the infinitesimal analysis. It is cer-

tainly not even touched by Carnot, or Comte, or Du-
hamel. Since the invention of the methods of Newton
and of Leibnitz, the attention of such writers seem to

have been wholly absorbed in the consideration of the

theory of the problem of tangents, the one problem of

the differential calculus, leaving the question of quad-

ratures, which belongs to the integral calculus, to

shift for itself, or to find the solution of its own diffi-

culties. It is possible, indeed, to reduce the question

of quadratures to a question of tangents, since, as we
have seen, the symbol X oo may be reduced to the

form -; but has any one ever discussed the question of

quadratures under this form, or resolved its difficulties

by the use or application of any other form ? Or, in

other words, has any one even attempted to untie the

" Gordian knot" (as it is called by Cavalieri) of the

problem of quadratures ? Newton, says Maclaurin,

unraveled that '^Gordian hnot" and "accomplished

Avhat Cavalieri wished for." * But Newton seems to

have excelled all other men in the faculty of inven-

tion, rather than in the faculty of metaphysical specu-

lation, and hence, in his attempts to remove the diffi-

culties of the infinitesimal analysis, he has created

* Introduction to Maclaurin's Fluxions, p. 49.

21 •»
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more knots than he has untied. Indeed, his own
method had its Gordian knot, as well as that of

Cavalieri, and it has been the more difficult of solu-

tion, because his followers have been kept in awe and

spell-bound by the authority of his great name.



NOTES.

KOTE A, PAGE 103.

No less a geometer than M. Legendre has proceeded on the

assumption that one denominate number may be multiplied by
another. " If we have," says he, " the proportion A : B : : C : D,

we know that the product of the extremes A X D is equal to the

product of the means B X C. This truth is incontestable for

numbers, it is also for any magnitudes whatever, provided tliey

are expressed or we imagine them expressed in numbers." Now,
the author does not here explicitly inform us in what sort of num-

bers, abstract or denominate, the magnitudes should be expressed.

But it is certain that they can be expressed only in concrete or

denominate numbers. Ilis meaning is elsewhere still more fully

shown. For he says, "We have frequently used the expression

the product of two or more lines, by which we mean the product of

the numbers that represent the lines." . ..." In the same man-

ner we should understand the product of a surface by a line, of a

surface by a solid, etc. ; it suffices to have established once for all

that these products are, or ought to be, considered as the products

of numbers, each of the kind which agrees with it. Thus the product

of a surface by a solid is no other thing than the product of a number

of superficial units by a number of solid units.'' Hence it appears

that although M. Legendre saw the absurdity of multiplying

magnitudes into each other, he perceived no difficulty in the

attempt to multiply one denominate number by another—such as

superficial units by solid units I

NOTE B, PAGE 130.

THE CLASSIFICATION OF LINES IN GENERAL.

Every equation, between the variables x and y, which is em-

braced in the general form,

Ay^ + iBx + C) r-* Hr (Da;^ + Ea; + F) jr-' +> etc., = 0,

247
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is called algebraic, and all others are transcendental. Hence lines

are divided into algebraic and transcendental, according to the nature

of their equations. It is only the first class or algebraic lines

which are usually discussed in Analytical Geometry.

Algebraic lines are arranged in orders according to the degree

of their equations. Thus a line is of the first, second, or third

order when its equation is of the first, second or third degree,

and so on for all higher orders and degrees. Newton, per-

ceiving that equations of the first degree represented only riglit

lines, called eurms of the first o>-der those which are given by equa-

tions of the second degree. There are certainly no simpler curves

than these; but although Newton has been followed by Maclaurin,

D'Alembert, and a few others, this denomination has not pre-

vailed. By geometers, at the present day, they are universally

called either lines or curves of the second order, thougli they are

the simplest of all the classes of curves.

As we have said, the right line is the only one which an equa-

tion of the first degree can represent. No equation of the second

degree can be constructed or conceived so as to represent more

than three curves. These remarkable curves, thus constituting

an entire order of themselves, are usually called "the conic sec-

tions" on account of their relation to the cone. No class of curves

could be more worthy of our attention, since the great Architect

of the Universe has been pleased to frame the system of the worlds

around us, as well as countless other systems, in conformity with

the mathematical theory of these most beautiful ideal forms.

But these lines, however important or beautiful, should not be

permitted to exclude all others from works on Analytical Geome-

try. For among lines of the third and higher orders there are

many worthy of our mo.st profound attention. If it were other-

wise, it would be strange indeed, since there are only three curves

of the second order, while there are eighty of the third, and thou-

sands of the fourth. This vast and fertile field should not, as

usual, be wholly overlooked and neglected by writers on Analyti-

cal Geometry. The historic interest connected with some of these

curves, the intrinsic beauty of others, and the practical utility of

many in the construction of machinery, should not permit them
to be neglected.














